67 research outputs found

    Electron doping and magnetic moment formation in N- and C-doped MgO

    Full text link
    The formation of the magnetic moment in C- and N-doped MgO is the result of a delicate interplay between Hund's coupling, hybridization and Jahn-Teller distortion. The balance depends on a number of environmental variables including electron doping. We investigate such a dependence by self-interaction corrected density functional theory and we find that the moment formation is robust with respect to electron doping. In contrast, the local symmetry around the dopant is more fragile and two different geometries can be stabilized. Crucially the magnetic moment is always extremely localized, making any carrier mediated picture of magnetism in d^0 magnets unlikely

    A theoretical perspective on the modification of the magnetocrystalline anisotropy at molecule-cobalt interfaces

    Full text link
    We study the modification of the magnetocrystalline anisotropy (MCA) of Co slabs induced by several different conjugated molecular overlayers, i.e., benzene, cyclooctatetraene, naphthalene, pyrene and coronene. We perform first-principles calculations based on Density Functional Theory and the magnetic force theorem. Our results indicate that molecular adsorption tends to favour a perpendicular MCA at surfaces. A detailed analysis of various atom-resolved quantities, accompanied by an elementary model, demonstrates that the underlying physical mechanism is related to the metal-molecule interfacial hybridization and, in particular, to the chemical bonding between the molecular C pzp_z and the out-of-plane Co dz2d_{z^2} orbitals. This effect can be estimated from the orbital magnetic moment of the surface Co atoms, a microscopic observable accessible to both theory and experiments. As such, we suggest a way to directly assess the MCA modifications at molecule-decorated surfaces, overcoming the limitations of experimental studies that rely on fits of magnetization hysteresis loops. Finally, we also study the interface between Co and both C60_{60} and Alq3_3, two molecules that find widespread use in organic spintronics. We show that the modification of the surface Co MCA is similar upon adsorption of these two molecules, thereby confirming the results of recent experiments.Comment: 10 figures in main text and 3 in the SM, 20 page

    Assessing the sensitivity of stall-regulated wind turbine power to blade design using high-fidelity computational fluid dynamics

    Get PDF
    This study provides a novel contribution toward the establishment of a new high-fidelity simulation-based design methodology for stall-regulated horizontal axis wind turbines. The aerodynamic design of these machines is complex, due to the difficulty of reliably predicting stall onset and poststall characteristics. Low-fidelity design methods, widely used in industry, are computationally efficient, but are often affected by significant uncertainty. Conversely, Navier–Stokes computational fluid dynamics (CFD) can reduce such uncertainty, resulting in lower development costs by reducing the need of field testing of designs not fit for purpose. Here, the compressible CFD research code COSA is used to assess the performance of two alternative designs of a 13-m stall-regulated rotor over a wide range of operating conditions. Validation of the numerical methodology is based on thorough comparisons of novel simulations and measured data of the National Renewable Energy Laboratory (NREL) phase VI turbine rotor, and one of the two industrial rotor designs. An excellent agreement is found in all cases. All simulations of the two industrial rotors are time-dependent, to capture the unsteadiness associated with stall which occurs at most wind speeds. The two designs are cross-compared, with emphasis on the different stall patterns resulting from particular design choices. The key novelty of this work is the CFD-based assessment of the correlation among turbine power, blade aerodynamics, and blade design variables (airfoil geometry, blade planform, and twist) over most operational wind speeds

    Compressible Navier-Stokes analysis of floating wind turbine rotor aerodynamics

    Get PDF
    The unsteady aerodynamics of floating offshore wind turbine rotors is more complex than that of fixed-bottom turbine rotors, due to additional rigid-body motion components enabled by the lack of rigid foundations; it is still unclear if low-fidelity aerodynamic models, such as the blade element momentum theory, provide sufficiently reliable input for floating turbine design requiring load data for a wide range of operating conditions. High-fidelity Navies-Stokes CFD has the potential to improve the understanding of FOWT rotor aerodynamics, and support the improvement of lower-fidelity aerodynamic analysis models. To accomplish these aims, this study uses an in-house compressible Navier-Stokes code and the NREL FAST engineering code to analyze the unsteady flow regime of the NREL 5 MW rotor pitching with amplitude of 4o and frequency of 0.2 Hz, and compares all results to those obtained with a commercial incompressible code and FAST in a previous independent study. The level of agreement of CFD and engineering analyses in each of these two studies is found to be quantitatively similar, but the peak rotor power of the compressible flow analysis is about 20 % higher than that of the incompressible analysis. This is possibly due to compressibility effects, as the instantaneous local Mach number is found to be higher than 0.4. Validation of the compressible flow analysis set-up, using an absolute frame formulation and low-speed preconditioning, is based on the analysis of the steady and yawed flow past the NREL Phase VI rotor

    On the characteristics of the wake of a wind turbine undergoing large motions caused by a floating structure: an insight based on experiments and multi-fidelity simulations from the OC6 Phase III Project

    Get PDF
    This study reports the results of the second round of analyses of the OC6 project Phase III. While the first round investigated rotor aerodynamic loading, here focus is given to the wake behavior of a floating wind turbine under large motion. Wind tunnel experimental data from the UNsteady Aerodynamics for FLOating Wind (UNAFLOW) project are compared with the results of simulations provided by participants with methods and codes of different levels of fidelity. The effect of platform motion both on the near and the far wake is investigated. More specifically, the behavior of tip vortices in the near wake is evaluated through multiple metrics, such as streamwise position, core radius, convection velocity, and circulation. Additionally, the onset of velocity oscillations in the far wake is analyzed because this can have a negative effect on stability and loading of downstream rotors. Results in the near wake for unsteady cases confirm that simulations and experiments tend to diverge from the expected linearized quasi-steady behavior when the rotor reduced frequency increases over 0.5. Additionally, differences across the simulations become significant, suggesting that further efforts are required to tune the currently available methodologies in order to correctly evaluate the aerodynamic response of a floating wind turbine in unsteady conditions. Regarding the far wake, it is seen that, in some conditions, numerical methods over-predict the impact of platform motion on the velocity fluctuations. Moreover, results suggest that, different from original expectations about a faster wake recovery in a floating wind turbine, the effect of platform motion on the far wake seems to be limited or even oriented to the generation of a wake less prone to dissipation.</p

    OC6 project phase III : validation of the aerodynamic loading on a wind turbine rotor undergoing large motion caused by a floating support structure

    Get PDF
    This paper provides a summary of the work done within Phase III of the Offshore Code Comparison, Collaboration, Continued, with Correlation and unCertainty project (OC6), under International Energy Agency Wind Task 30. This phase focused on validating the aerodynamic loading on a wind turbine rotor undergoing large motion caused by a floating support structure. Numerical models of the Danish Technical University 10-MW reference wind turbine were validated using measurement data from a 1:75 scale test performed during the UNsteady Aerodynamics for FLOating Wind (UNAFLOW) project and a follow-on experimental campaign, both performed at the Politecnico di Milano wind tunnel. Validation of the models was performed by comparing the loads for steady (fixed platform) and unsteady wind conditions (harmonic motion of the platform). For the unsteady wind conditions, the platform was forced to oscillate in the surge and pitch directions under several frequencies and amplitudes. These oscillations result in a wind variation that impacts the rotor loads (e.g., thrust and torque). For the conditions studied in these tests, the system mainly described a quasi-steady aerodynamic behavior. Only a small hysteresis in airfoil performance undergoing angle of attack variations in attached flow was observed. During the experiments, the rotor speed and blade pitch angle were held constant. However, in real wind turbine operating conditions, the surge and pitch variations would result in rotor speed variations and/or blade pitch actuations depending on the wind turbine controller region that the system is operating. Additional simulations with these control parameters were conducted to verify the fidelity between different models. Participant results showed in general a good agreement with the experimental measurements and the need to account for dynamic inflow when there are changes in the flow conditions due to the rotor speed variations or blade pitch actuations in response to surge and pitch motion. Numerical models not accounting for dynamic inflow effects predicted rotor loads that were 9 % lower in amplitude during rotor speed variations and 18 % higher in amplitude during blade pitch actuations
    • …
    corecore