7 research outputs found

    MRI of Breast Lesions

    Full text link
    In Magnetic Resonance Mammography (MRM) high spatial as well as temporal resolution is of utmost importance for differentiating between malignant and benign lesions. Therefore, a so‐called dynamic technique (i.e., the repetitive imaging of the same slices before and in short time intervals after the injection of contrast medium) is essential to detect the differences in initial enhancements between malignant and benign lesions which are reflected by the tumorangiogenetic vascular network of malignant lesions. This unit presents a basic protocol and several alternate protocols for dynamic MRM.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145284/1/cpmia2101.pd

    A comparison of T2*-weighted magnitude and phase imaging for measuring the arterial input function in the rat aorta following intravenous injection of gadolinium contrast agent

    No full text
    The arterial input function (AIF) is important for quantitative MR imaging perfusion experiments employing Gd contrast agents. This study compared the accuracy of T2*-weighted magnitude and phase imaging for noninvasive measurement of the AIF in the rat aorta. Twenty-eight in vivo experiments were performed involving simultaneous arterial blood sampling and MR imaging following Gd injection. In vitro experiments were also performed to confirm the in vivo results. At 1.89 T and TE=3 ms, the relationship between changes in 1/T2* in blood (estimated from MR signal magnitude) and Gd concentration ([Gd]) was measured to be ∌19 s-1 mM -1, while that between phase and [Gd] was ∌0.19 rad mM -1. Both of these values are consistent with previous

    Protocols for multi-site trials using hyperpolarized 129Xe MRI for imaging of ventilation, alveolar-airspace size, and gas exchange: A position paper from the 129Xe MRI clinical trials consortium

    No full text
    Hyperpolarized (HP) 129Xe MRI uniquely images pulmonary ventilation, gas exchange, and terminal airway morphology rapidly and safely, providing novel information not possible using conventional imaging modalities or pulmonary function tests. As such, there is mounting interest in expanding the use of biomarkers derived from HP 129Xe MRI as outcome measures in multi-site clinical trials across a range of pulmonary disorders. Until recently, HP 129Xe MRI techniques have been developed largely independently at a limited number of academic centers, without harmonizing acquisition strategies. To promote uniformity and adoption of HP 129Xe MRI more widely in translational research, multi-site trials, and ultimately clinical practice, this position paper from the 129Xe MRI Clinical Trials Consortium (https://cpir.cchmc.org/XeMRICTC) recommends standard protocols to harmonize methods for image acquisition in HP 129Xe MRI. Recommendations are described for the most common HP gas MRI techniques—calibration, ventilation, alveolar-airspace size, and gas exchange—across MRI scanner manufacturers most used for this application. Moreover, recommendations are described for 129Xe dose volumes and breath-hold standardization to further foster consistency of imaging studies. The intention is that sites with HP 129Xe MRI capabilities can readily implement these methods to obtain consistent high-quality images that provide regional insight into lung structure and function. While this document represents consensus at a snapshot in time, a roadmap for technical developments is provided that will further increase image quality and efficiency. These standardized dosing and imaging protocols will facilitate the wider adoption of HP 129Xe MRI for multi-site pulmonary research
    corecore