15 research outputs found

    Strategies to Drive Photo-Fenton Process at Mild Conditions for the Removal of Xenobiotics from Aqueous Systems

    Full text link
    [EN] The aim of this paper is to provide an overview on the different approaches that can be employed to drive a photo-Fenton process under mild conditions, using both heterogeneous and homogeneous iron sources. For this purpose, sections are devoted to the following strategies: a) addition of iron at low concentrations; b) using the matrix of the effluent in order to avoid deactivation of iron; c) addition of chemical auxiliaries to form photoactive complexes with iron, such as carboxylates, chelating agents and humic-like macromolecules; d) strategies leading to the application of heterogeneous photo-Fenton process, by using iron-based solid particles or by hosting iron on different supports and; e) using heterogeneous iron sources as a reservoir for constant dosing of homogeneous iron photocatalyst. In particular, the review will focus on the elimination of emerging pollutants (e.g. drugs, personal care products or pesticides at low concentrations) which are the effluents where applying neutral photo-Fenton seems especially meaningful, although relevant works with other families of pollutants are also consideredThis work was performed with the financial of the Marie Sklodowska-Curie Research and Innovation Staff Exchange project funded by the European Commission H2020-MSCA-RISE-2014, within the framework of the research project Mat4treat. Authors also want to thank the financial support of Spanish Ministerio of Economía y Competitividad (TRICERATOPS project and FOTO-CAT excellence network).Santos-Juanes Jordá, L.; Amat Payá, AM.; Arqués Sanz, A. (2017). Strategies to Drive Photo-Fenton Process at Mild Conditions for the Removal of Xenobiotics from Aqueous Systems. Current Organic Chemistry. 21(12):1074-1083. https://doi.org/10.2174/1385272821666170102150337S10741083211

    Mild Fenton Processes for the Removal of Preservatives: Interfering Effect of Methylisothiazolinone (MIT) on Paraben Degradation

    Full text link
    [EN] The degradation of various preservatives used in the cosmetics industry, including five parabens and their most employed substitute, methylisothiazolinone (MIT), was investigated. A mild photo-Fenton process was applied using low iron concentrations (5 mg/L) at a pH of five, instead of the traditional acidic value of three. At these conditions, the paraben degradation was very low after one hour of reaction and it was necessary to present humic-like substances (HLS) acting as iron chelators to improve the process. Values obtained when MIT was treated were very low, also in the presence of HLS, indicating that their complexing effect was not acting properly. When MIT was added to the mixture of parabens an inhibitory effect was found in the presence of HLS. A possible complex between iron and MIT was suggested and the studies of hydrogen peroxide consumption and Job's plot technique confirmed this hypothesis. Evidence of the formation of this inactive complex, so far never reported, will be essential in future work when dealing with this compound using Fenton processes. Furthermore, this fact points out the importance of using mixtures of model contaminants instead of a single one or a group of the same family, since their ability to form active or inactive complexes with iron can strongly change the behavior of the whole system.Authors want to acknowledge the financial support of Spanish Ministerio de Ciencia, Innovacion y Universidad (RTI 2018-097997-B-C31, Calypsol Project) and Generalitat Valenciana AICO/2021/014.Duarte-Alvarado, V.; Santos-Juanes Jordá, L.; Arqués Sanz, A.; Amat Payá, AM. (2022). Mild Fenton Processes for the Removal of Preservatives: Interfering Effect of Methylisothiazolinone (MIT) on Paraben Degradation. Catalysts. 12(11):1-16. https://doi.org/10.3390/catal12111390116121

    Humic like substances for the treatment of scarcely soluble pollutants by mild photo-Fenton process

    Full text link
    [EN] Humic-like substances (HLS) extracted from urban wastes have been tested as auxiliaries for the photo Fenton removal of thiabendazole (TBZ) under simulated sunlight. Experimental design methodology based on Doehlert matrices was employed to check the effects of hydrogen peroxide concentration, HLS amount as well as TBZ loading; this last parameter was studied in the range 25-100 mg/L, to include values below and above the limit of solubility at pH = 5. Very satisfactory results were reached when TBZ was above solubility if HLS and H2O2 amounts were high. This could be attributed to an interaction of HLS-TBZ that enhances the solubility of the pollutant. Additional evidence supporting the latter interaction was obtained by fluorescence measurements (excitation emission matrices) and parallel factor analysis (PARAFAC). (C) 2018 Elsevier Ltd. All rights reserved.Authors want to acknowledge the financial support of Spanish Ministerio de Economia y Competitividad (CTQ2015-69832-C04) and European Union (645551-RISE-2014, MAT4TREAT). The present work was partially supported by UNLP (11/X679), ANPCyT (PICT-2015-0374A) and CONICET (PIP: 12-2013-01-00236CO). B. Caram thank the CONICET for his research graduate grant. F. S. Garcia Einschlag is a research member of CONICET.Caram, B.; García-Ballesteros, S.; Santos-Juanes Jordá, L.; Arqués Sanz, A.; Garcia-Einschlag, FS. (2018). Humic like substances for the treatment of scarcely soluble pollutants by mild photo-Fenton process. Chemosphere. 198:139-146. https://doi.org/10.1016/j.chemosphere.2018.01.074S13914619

    Unveiling the Dependence between Hydroxyl Radical Generation and Performance of Fenton Systems with Complexed Iron

    Full text link
    [EN] Humiclike substances (HLS) have been demonstrated to be useful auxiliaries to drive the (photo)-Fenton process at mild pH, by avoiding iron inactivation via formation of active complexes. However, the actual performance of the process is affected by a manifold of opposite processes. In this work, the generation of hydroxyl radical-like reactive species in the Fentonlike process has been investigated using electron paramagnetic resonance, employing 5,5-dimethyl-1-pyrroline-N-oxide as a probe molecule. The signal obtained with the Fe(II)-HLS-H2O2 system at pH = was very intense but decreased with time, in line with the difficult reduction of the formed Fe(III) to Fe(II). On the contrary, the signal of the Fe(III)-HLS-H2O2 system was weak but stable. The most intense signal was observed at HLS concentration of ca. 30 mg/L. Interestingly, the performance of the Fenton system at pH = 5 to degrade caffeine followed the same trends, although caffeine removal was very low after 1 h of irradiation. The results were more evident in a solar simulated photo-Fenton process, where an increase in the abatement of caffeine was observed until an HLS concentration of 30 mg/L, where 98% removal was reached after 1 h.The authors want to acknowledge the financial support from Ministerio de Ciencia, Innovacion y Universidades (RTI2018-097997-B-C31) and European Union (645551-RISE-2014, MAT4TREAT). P.G.-N. would like to thank Spanish Ministerio de Economia y Competitividad for her fellowship (BES-2016-077962).García-Negueroles, P.; García-Ballesteros, S.; Amat Payá, AM.; Laurenti, E.; Arqués Sanz, A.; Santos-Juanes Jordá, L. (2019). Unveiling the Dependence between Hydroxyl Radical Generation and Performance of Fenton Systems with Complexed Iron. ACS Omega. 4(26):21698-21703. https://doi.org/10.1021/acsomega.9b02241S216982170342

    Parabens and Methylisotiazolinone (MIT): Preservatives with Different Behaviors When Subjected to Ozone and Ultraviolet Light Treatments

    Full text link
    [EN] The influence that contaminants exert on the degradation of other substances commonly found in the same water bodies drives this study, which aims to investigate the simultaneous degradation of preservatives such as parabens and methylisothiazolinone (MIT). Mixtures of five parabens, MIT solutions, and mixtures of all five parabens plus MIT (each at 5 mg/L) were treated using 254 nm UV light, ozone treatments, and simultaneous ozone and UV light treatments at three different pH levels (3, 5, and 9). Regardless of pH, UV light is inefficient in degrading parabens, whereas MIT is efficiently degraded under this radiation. On the other hand, ozone treatments rapidly degrade the paraben mixture at any pH, with a basic pH resulting in faster degradation due to the predominance of the indirect mechanism. MIT, due to its structural characteristics, reacts minimally with ozone, and the process is enhanced at basic pH when hydroxyl radicals are involved. The simultaneous treatment with ozone and UV light proves to be the fastest method for eliminating both parabens and MIT at any pH. However, when treating joint mixtures of parabens and MIT, behaviors change notably, particularly for processes involving UV light due to the interfering effect of MIT. Both parabens and MIT require more time to degrade, except at an acidic pH. Only MIT reduces its ozone treatment time when treated alongside parabens due to the distinct degradation mechanisms that each type of contaminant has in the presence of ozone.This research was funded by the Generalitat Valenciana (COSMETICFARMA Project, AICO/2021/014) and Spanish Ministerio de Ciencia e Innovacion (AQUAENAGRI) Project, PID2021-126400OB-C31).López-Timoner, R.; Duarte-Alvarado, V.; Castillo, MÁ.; Santos-Juanes Jordá, L.; Arqués Sanz, A.; Amat Payá, AM. (2023). Parabens and Methylisotiazolinone (MIT): Preservatives with Different Behaviors When Subjected to Ozone and Ultraviolet Light Treatments. Water. 15(21):1-16. https://doi.org/10.3390/w15213837116152

    Pentachlorophenol Removal from Water by Soybean Peroxidase and Iron(II) Salts Concerted Action

    Get PDF
    [EN] Soybean peroxidase (SBP) has been employed for the treatment of aqueous solutions containing pentachlorophenol (PCP) in the presence of hydrogen peroxide at pH range 5-7. Reaction carried out with 1mg/L of PCP, 4mg/L of H2O2, and 1.3x10(-9)M of SBP showed a fast initial elimination of PCP (ca. 30% in 20min), but the reaction does not go beyond the removal of 50% of the initial concentration of PCP. Modification in SBP and PCP amounts did not change the reaction profile and higher amounts of H2O2 were detrimental for the reaction. Addition of Fe(II) to the system resulted in an acceleration of the process to reach nearly complete PCP removal at pH 5 or 6; this is more probably due to a synergetic effect of the enzymatic process and Fenton reaction. However, experiments developed in tap water resulted in a lower PCP elimination, but this inconvenience can be partly overcome by leaving the tap water overnight in an open vessel before reaction.We want to acknowledge Davide Mainero from Acea Pinerolese for his collaboration in this research. The authors want to thank the financial support of the European Union (PIRSES-GA-2010-269128, EnvironBOS and Marie Sklodowska-Curie Research and Innovation Staff Exchange projectH2020-MSCA-RISE-2014, Mat4treaT-project number: 645551) and Spanish Ministerio de Educacion y Ciencia (CTQ2015-69832-C4-4-R). Sara Garcia-Ballesteros would like to thank the Spanish Ministerio de Economia y Competitividad for her fellowship (BES-2013-066201).Tolardo, V.; García-Ballesteros, S.; Santos-Juanes Jordá, L.; Vercher Pérez, RF.; Amat Payá, AM.; Arqués Sanz, A.; Laurenti, E. (2019). Pentachlorophenol Removal from Water by Soybean Peroxidase and Iron(II) Salts Concerted Action. Water Air & Soil Pollution. 230(6):1-8. https://doi.org/10.1007/s11270-019-4189-7S182306Babuponnusami, A., & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1), 557–572. https://doi.org/10.1016/j.jece.2013.10.011 .Ballschmiter, K. (2003). Pattern and sources of naturally produced organohalogens in the marine environment: biogenic formation of organohalogens. Chemosphere, 52(2), 313–324. https://doi.org/10.1016/S0045-6535(03)00211-X .Calza, P., Zacchigna, D., & Laurenti, E. (2016). Degradation of orange dyes and carbamazepine by soybean peroxidase immobilized on silica monoliths and titanium dioxide. Environmental Science and Pollution Research, 23(23), 23742–23749. https://doi.org/10.1007/s11356-016-7399-1 .Caza, N., Bewtra, J., Biswas, N., & Taylor, K. (1999). Removal of phenolic compounds from synthetic wastewater using soybean peroxidase. Water Research, 33(13), 3012–3018. https://doi.org/10.1016/S0043-1354(98)00525-9 .Czaplicka, M. (2004). Sources and transformations of chlorophenols in the natural environment. Science of the Total Environment, 322(1–3), 21–39. https://doi.org/10.1016/j.scitotenv.2003.09.015 .Donadelli, J. A., Carlos, L., Arques, A., & García Einschlag, F. S. (2018). Kinetic and mechanistic analysis of azo dyes decolorization by ZVI-assisted Fenton systems: pH-dependent shift in the contributions of reductive and oxidative transformation pathways. Applied Catalysis B: Environmental, 231, 51–61. https://doi.org/10.1016/j.apcatb.2018.02.057 .Durán, N., & Esposito, E. (2000). Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Applied Catalysis B: Environmental, 28(2), 83–99. https://doi.org/10.1016/S0926-3373(00)00168-5 .Essam, T., Amin, M. A., El Tayeb, O., Mattiasson, B., & Guieysse, B. (2007). Sequential photochemical–biological degradation of chlorophenols. Chemosphere, 66(11), 2201–2209. https://doi.org/10.1016/j.chemosphere.2006.08.036 .Garcia-Peña, E. I., Zarate-Segura, P., Guerra-Blanco, P., Poznyak, T., & Chairez, I. (2012). Enhanced phenol and chlorinated phenols removal by combining ozonation and biodegradation. Water, Air, and Soil Pollution, 223(7), 4047–4064. https://doi.org/10.1007/s11270-012-1172-y .Hoekstra, E. J., De Weerd, H., De Leer, E. W. B., & Brinkman, U. A. T. (1999). Natural formation of chlorinated phenols, dibenzo-p-dioxins, and dibenzofurans in soil of a Douglas fir forest. Environmental Science and Technology, 33(15), 2543–2549. https://doi.org/10.1021/es9900104 .Karci, A. (2014). Degradation of chlorophenols and alkylphenol ethoxylates, two representative textile chemicals, in water by advanced oxidation processes: the state of the art on transformation products and toxicity. Chemosphere, 99, 1–18. https://doi.org/10.1016/j.chemosphere.2013.10.034 .Li, Z. (2018). Health risk characterization of maximum legal exposures for persistent organic pollutant (POP) pesticides in residential soil: an analysis. Journal of Environmental Management, 205, 163–173. https://doi.org/10.1016/j.jenvman.2017.09.070 .Marchis, T., Avetta, P., Bianco-Prevot, A., Fabbri, D., Viscardi, G., & Laurenti, E. (2011). Oxidative degradation of Remazol Turquoise Blue G 133 by soybean peroxidase. Journal of Inorganic Biochemistry, 105(2), 321–327. https://doi.org/10.1016/j.jinorgbio.2010.11.009 .Marchis, T., Cerrato, G., Magnacca, G., Crocellà, V., & Laurenti, E. (2012). Immobilization of soybean peroxidase on aminopropyl glass beads: structural and kinetic studies. Biochemical Engineering Journal, 67, 28–34. https://doi.org/10.1016/j.bej.2012.05.002 .Muñoz, M., de Pedro, Z. M., Casas, J. A., & Rodriguez, J. J. (2013). Chlorophenols breakdown by a sequential hydrodechlorination-oxidation treatment with a magnetic Pd-Fe/?-Al2O3 catalyst. Water Research, 47(9), 3070–3080. https://doi.org/10.1016/j.watres.2013.03.024 .Naghdi, M., Taheran, M., Brar, S. K., Kermanshahi-pour, A., Verma, M., & Surampalli, R. Y. (2018). Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. Environmental Pollution. Elsevier. https://doi.org/10.1016/j.envpol.2017.11.060 .Ngo, T. T., & Lenhoff, H. M. (1980). A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. Analytical Biochemistry, 105(1), 389–397. https://doi.org/10.1016/0003-2697(80)90475-3 .Olaniran, A. O., & Igbinosa, E. O. (2011). Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes. Chemosphere, 83(10), 1297–1306. https://doi.org/10.1016/j.chemosphere.2011.04.009 .Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Science of the Total Environment, 409(20), 4141–4166. https://doi.org/10.1016/j.scitotenv.2010.08.061 .Passardi, F., Cosio, C., Penel, C., & Dunand, C. (2005, July 22). Peroxidases have more functions than a Swiss army knife. Plant Cell Reports. Springer-Verlag. https://doi.org/10.1007/s00299-005-0972-6 .Pera-Titus, M., Garcı́a-Molina, V., Baños, M. A., Giménez, J., & Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental, 47(4), 219–256. https://doi.org/10.1016/j.apcatb.2003.09.010 .Qayyum, H., Maroof, H., & Yasha, K. (2009). Remediation and treatment of organopollutants mediated by peroxidases: a review. Critical Reviews in Biotechnology, 29(2), 94–119. https://doi.org/10.1080/07388550802685306 .Samokyszyn, V. M., Freeman, J. P., Rao Maddipati, K., & Lloyd, R. V. (1995). Peroxidase-catalyzed oxidation of pentachlorophenol. Chemical Research in Toxicology, 8, 349–355 http://pubs.acs.org/doi/pdf/10.1021/tx00045a005 . Accessed 23 June 2017Santos-Juanes, L., Amat, A. M., & Arques, A. (2017a). Strategies to drive photo-Fenton process at mild conditions for the removal of xenobiotics from aqueous systems. Current Organic Chemistry, 21(12), 1074–1083. https://doi.org/10.1136/adc.2010.199901 .Santos-Juanes, L., García Einschlag, F. S., Amat, A. M., & Arques, A. (2017b). Combining ZVI reduction with photo-Fenton process for the removal of persistent pollutants. Chemical Engineering Journal, 310, 484–490. https://doi.org/10.1016/j.cej.2016.04.114 .Sarria, V., Parra, S., Adler, N., Péringer, P., Benitez, N., & Pulgarin, C. (2002). Recent developments in the coupling of photoassisted and aerobic biological processes for the treatment of biorecalcitrant compounds. Catalysis Today, 76(2–4), 301–315. https://doi.org/10.1016/S0920-5861(02)00228-6 .Sharma, S., Mukhopadhyay, M., & Murthy, Z. V. P. (2013). Treatment of chlorophenols from wastewaters by advanced oxidation processes. Separation & Purification Reviews, 42(May 2015), 37–41. https://doi.org/10.1080/15422119.2012.669804 .Soler, J., García-Ripoll, A., Hayek, N., Miró, P., Vicente, R., Arques, A., & Amat, A. M. (2009). Effect of inorganic ions on the solar detoxification of water polluted with pesticides. Water Research, 43(18), 4441–4450. https://doi.org/10.1016/j.watres.2009.07.011 .Steevensz, A., Cordova Villegas, L. G., Feng, W., Taylor, K. E., Bewtra, J. K., & Biswas, N. (2014). Soybean peroxidase for industrial wastewater treatment: a mini review. Journal of Environmental Engineering and Science, 9(3), 181–186. https://doi.org/10.1680/jees.13.00013 .Sun, Z., Wei, X., Zhang, H., & Hu, X. (2015). Dechlorination of pentachlorophenol (PCP) in aqueous solution on novel Pd-loaded electrode modified with PPy-SDBS composite film. Environmental Science and Pollution Research, 22(5), 3828–3837. https://doi.org/10.1007/s11356-014-3641-x .Tsai, W.-T. (2013). A review on environmental distributions and risk management of phenols pertaining to the endocrine disrupting chemicals in Taiwan. Toxicological & Environmental Chemistry, 95(5), 723–736. https://doi.org/10.1080/02772248.2013.818150 .Valderrama, B., Ayala, M., & Vazquez-Duhalt, R. (2002, May 1). Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes. Chemistry and Biology. Cell Press. https://doi.org/10.1016/S1074-5521(02)00149-7 .Verbrugge, L. A., Kahn, L., & Morton, J. M. (2018). Pentachlorophenol, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo furans in surface soil surrounding pentachlorophenol-treated utility poles on the Kenai National Wildlife Refuge, Alaska USA. Environmental Science and Pollution Research, 25(19), 19187–19195. https://doi.org/10.1007/s11356-018-2269-7 .Wright, H., & Nicell, J. A. (1999). Characterization of soybean peroxidase for the treatment of aqueous phenols. Bioresource Technology, 70(1), 69–79. https://doi.org/10.1016/S0960-8524(99)00007-3 .Zhang, G., & Nicell, J. A. (2000). Treatment of aqueous pentachlorophenol by horseradish peroxidase and hydrogen peroxide. Water Research, 34(5), 1629–1637. https://doi.org/10.1016/S0043-1354(99)00326-7 .Zhang, J., Ye, P., Chen, S., & Wang, W. (2007). Removal of pentachlorophenol by immobilized horseradish peroxidase. International Biodeterioration & Biodegradation, 59, 307–314. https://doi.org/10.1016/j.ibiod.2006.09.003 .Zheng, W., Yu, H., Wang, X., & Qu, W. (2012, July 1). Systematic review of pentachlorophenol occurrence in the environment and in humans in China: not a negligible health risk due to the re-emergence of schistosomiasis. Environment International. Pergamon. https://doi.org/10.1016/j.envint.2011.04.014

    Treatment and reuse of textile wastewaters by mild solar photo-Fenton in the presence of humic-like substances

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11356-016-7889-1In this paper, the possibility of reusing textile effluents for new dyeing baths has been investigated. For this purpose, different trichromies using Direct Red 80, Direct Blue 106, and Direct Yellow 98 on cotton have been used. Effluents have been treated by means of a photo-Fenton process at pH 5. Addition of humic-like substances isolated form urban wastes is necessary in order to prevent iron deactivation because of the formation of non-active iron hydroxides. Laboratory-scale experiments carried out with synthetic effluents show that comparable results were obtained when using as solvent water treated by photo-Fenton with SBO and fresh deionized water. Experiments were scaled up to pilot plant illuminated under sunlight, using in this case a real textile effluent. Decoloration of the effluent could be achieved after moderate irradiation and cotton dyed with this water presented similar characteristics as when deionized water was used.This work was realized with the financial support of a Marie Sklodowska-Curie Research and Innovation Staff Exchange project funded by the European Commission H2020-MSCA-RISE-2014 within the framework of the research project Mat4treaT (project number 645551). Financial support from Spanish Government (CTQ2015-69832-C4-4-R) is gratefully acknowledged. The authors acknowledge the financial support of the Generalitat Valenciana, Conselleria d’Educació, Cultura i Esport (GV/AICO/2015/124) and CTQ2015-69832-C4-4-R.García-Negueroles, P.; Bou-Belda, E.; Santos-Juanes Jordá, L.; Amat Payá, AM.; Arques Sanz, A.; Vercher Pérez, RF.; Monllor Pérez, P.... (2017). Treatment and reuse of textile wastewaters by mild solar photo-Fenton in the presence of humic-like substances. Environmental Science and Pollution Research. 24(14):12664-12672. https://doi.org/10.1007/s11356-016-7889-1S12664126722414Ali N, Hameed A et al (2009) Physicochemical characterization and bioremediation perspective of textile effluent, dyes and metals by indigenous bacteria. J Hazard Mater 164(1):322–328Amat AM, Arques A, Miranda MA, Seguí S (2004) Photo-Fenton reaction for the abatement of commercial surfactants in a solar pilot plant. Sol Energy 77:559–566Amorim CC, Leão MMD, Moreira RFPM, Fabris JD, Henriques AB (2013) Performance of blast furnace waste for azo dye degradation through photo-Fenton-like processes. Chem Eng J 224:59–66Anjaneyulu Y, Sreedhara Chary N et al (2005) Decolorization of industrial effluents: available methods and emerging technologies. Environmental Science and Biotechnology 4(4):245–273Arslan-Alaton I, Tureli G, Olmez-Hanci T (2009) Treatment of azo dye production wastewaters using photo-Fenton-like advanced oxidation processes: optimization by response surface methodology. J Photochem Photobiol A Chem 202:142–153Azbar N, Yonar T, Kestioglu K (2004) Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere 55:35–43Baba Y, Yatagai T, Harada T, Kawase Y (2015) Hydroxyl radical generation in the photo-Fenton process: effects of carboxylic acids on iron redox cycling. Chemical Engineering Journal, Volume 277(1):229–241Bakshi DK, Sharma P (2003) Genotoxicity of textile dyes evaluated with Ames test and rec-assay. J Environ Pathol Toxicol Oncol 22:10Blanco J, Torrades F, Morón M, Brouta-Agnesá M, García-Montaño J (2014) Photo-Fenton and sequencing batch reactor coupled to photo-Fenton processes for textile wastewater reclamation: feasibility of reuse in dyeing processes. Chem Eng J 240:469–475Chen Q, Yang Y, Zhou M, Liu M, Yu S, Gao C (2015) Comparative study on the treatment of raw and biologically treated textile effluents through submerged nanofiltration. Original research article. J Hazard Mater 284(2):121–129dos Santos AB, Cervantes FJ, van Lier J (2007) Review paper on current technologies for decolorisation of textile wastewater: perspectives for anaerobic biotechnology. Bioresour Technol 37:315–377Durán A, Monteagudo JM, Amores E (2008) Solar photo-Fenton degradation of reactive blue 4 in a CPC reactor. Appl Catal B Environ 80(1–2):42–50Ergas S, Therriault B, Reckhow D (2006) Evaluation of water reuse technologies for the textile industry. J Environ Eng 132:315–323García Ballesteros S, Costante R, Vicente R, Mora M, Amat AM, Arques A, Carlos L, García Einschlag FS (2016) Humic-like substances from urban waste as auxiliaries for photo-Fenton treatment: a fluorescence EEM-PARAFAC study. Ptotochem Photobiol Sci in press. doi: 10.1039/c6pp00236fGhaly AE, Ananthashankar R, Alhattab M, Ramakrishnan VV (2014) Production, characterization and treatment of textile effluents: a critical review. J Chem Eng Process Technol 05:1–18Ghoreishian SM, Maleknia L, Mirzapour H, Norouzi M (2013) Antibacterial properties and color fastness of silk fabric dyed with turmeric extract. Fiber Polym 14(2):201–207. doi: 10.1007/s12221-013-0201-9Gomis J, Vercher RF, Amat AM, Mártire DO, González MC, Bianco Prevot A, Montoneri E, Arques A, Carlos L (2013) Application of soluble bio-organic substances (SBO) as photocatalysts for wastewater treatment: sensitizing effect and photo-Fenton-like process. Catal Today 209:176–180Gomis J, Carlos L, Bianco Prevot A, Teixeira ACSC, Mora M, Amat AM, Vicente R, Arques A (2015) Bio-based substances from urban waste as auxiliaries for solar photo-Fenton treatment under mild conditions: optimization of operational variables. Catal Today 240:39–45Gupta D, Khare SK, Laha A (2004) Antimicrobial properties of natural dyes against gram negative bacteria. Color Technol 120(4):167–171. doi: 10.1111/j.1478-4408.2004.tb00224.xHan S, Yang Y (2005) Antimicrobial activity of wool fabric treated with curcumin. Dyes Pigments 64(2):157–161. doi: 10.1016/j.dyepig.2004.05.008Huang W, Brigante M, Wu F, Mousty C, Hanna K, Mailhot G (2013) Assessment of the Fe (III)–EDDS complex in Fenton-like processes: from the radical formation to the degradation of bisphenol A. Environ Sci Technol 47(4):1952–1959Ince NH, Tezcanh G (1999) Treatability of textile dye-bath effluents by advanced oxidation: preparation for reuse. Water Sci Technol 40(1):183–190ISO 6332:1988. Water quality: determination of iron, spectrometric method using 1,10-phenanthrolineISO 105-X12:2001. Textiles—test for color fastness—part X12: color fastness to rubbing.ISO 105-J01:2009. Textiles. Ensayos de solidez del color. Parte J01: Principios generales para la medición del color de superficies.ISO 105-J03:2009. Textiles. Tests for colour fastness. Part J03: calculation of colour differencesISO 105-C06:2010. Textiles—tests for color fastness—part C06: color fastness to domestic and commercial laundering.ISO 7887:2011. Water quality: examination and determination of colour. Method B.Khandare RV, Govindwar SP (2015) Phytoremediation of textile dyes and effluents: current scenario and future prospects. Review Article Biotechnology Advances 33(8):1697–1714Maezono T, Tokumura M, Sekine M, Kawase Y (2011) Hydroxyl radical concentration profile in photo-Fenton oxidation process: generation and consumption of hydroxyl radicals during the discoloration of azo-dye orange II. Chemosphere 82(10):1422–1430Malato S, Blanco J, Cáceres J, Fernández-Alba AR, Agüera A, Rodríguez A (2002) Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO2 using solar energy. Catalysis Today 76 2002(2–4):209–220Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147(1):1–59Malpass GRP, Miwa DW, Mortari DA, Machado SAS, Motheo AJ (2007) Decolorisation of real textile waste using electrochemical techniques: effect of the chloride concentration. Water Res 41:2969–2977Manenti D, Soares P, Silva TCV, Módenes A, Espinoza-Quiñones F, Bergamasco R, Boaventura RR, Vilar VP (2015) Performance evaluation of different solar advanced oxidation processes applied to the treatment of a real textile dyeing wastewater. Environ Sci Pollut Res 22:833–845Mondal M, De S (2016) Treatment of textile plant effluent by hollow fiber nanofiltration membrane and multi-component steady state modeling. Chem Eng J 285:304–318Montoneri, E., Boffa, V., Quagliotto, P., Mendichi, R., Chierotti, M. R., Gobetto, R., and Medana, C. (2008a) "Humic acid-like matter isolated from green urban wastes. Part 1: Structure and surfactant properties". Bio Res 3(1), 123–141.Montoneri, E., Savarino, P., Bottigliengo, S., Musso, G., Boffa, V., Prevot, A. B., Fabri, D. and Pramauro, E. (2008b) "Humic acid-like matter isolated from green urban wastes Part II: Performance in chemical and environmental technologies". Bio Res 3(1), 217–233.Montoneri E, Boffa V, Savarino P, Tambone F, Adani F, Micheletti L, Gianotti C, Chiono R (2009) Use of biosurfactants from urban wastes compost in textile dyeing and soil remediation. Waste Manag 29:383–389Neamtu M, Yediler A, Siminiceanu I, Kettrup A (2003) Oxidation of commercial reactive azo dye aqueous solutions by the photo-Fenton and Fenton-like processes. J Photochem Photobiol A 161:87–93Oller I, Malato S, Sánchez-Pérez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409(20):4141–4166Pignatello J, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Environ Sci Technol 36:1–84Prato-Garcia D, Buitrón G (2011) Degradation of azo dye mixtures through sequential hybrid systems: evaluation of three advanced oxidation processes for the pre-treatment stage. J Photochem Photobiol A Chem 223:103–110Rodriguez M, Sarria V, Esplugas S, Pulgarin CP-F (2002) Treatment of a biorecalcitrant wastewater generated in textile activities: biodegradability of the photo-treated solution. J Photochem Photobiol A Chem 151:129–135Rosa JM, Fileti AMF, Tambourgi EB, Santana JCC (2015) Dyeing of cotton with reactive dyestuffs: the continuous reuse of textile wastewater effluent treated by ultraviolet/hydrogen peroxide homogeneous photocatalysis. J Clean Prod 90:60–65Sarayu K, Sandhya S (2012) Current technologies for biological treatment of textile wastewater—a review. Appl Biochem Biotech 147(3):645–661Sarkar AK (2004) An evaluation of UV protection imparted by cotton fabrics dyed with natural colorants. BMC Dermatol 4(1):15. doi: 10.1186/1471-5945-4-15Sharma KP, Sharma S et al (2007) A comparative study on characterization of textile wastewaters (untreated and treated) toxicity by chemical and biological tests. Chemosphere 69(1):48–54Standard methods for the examination of water and wastewater (2012) Part 2000: Physical & Aggregate properties, 22end edn. APHA, AWWA and WEFSutton R, Sposito G (2005) Molecular structure in soil humic substances: the new view. Environ Sci Technol 39:9009–9015Wang C, Yediler A, Lienert D, Wang Z, Kettrup A (2002) Toxicity evaluation of reactive dyestuffs, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria Vibrio fischeri. Chemosphere 46(2):339–344Yoo J, Ahn B, Jeong-Ju O, Han T, Kim W-K, Kim S, Jung J (2013) Identification of toxicity variations in a stream affected by industrial effluents using Daphnia magna and Ulva pertusa. Original research article. J Hazard Mater 260:1042–104

    Humic like substances extracted from oil mill wastes in photo-Fenton processes: Characterization, performance and toxicity assesment

    Full text link
    [EN] Olive mill waste has been used as sourcing materials for the isolation of humic like substances (OMW-HLS) which have demonstrated its capacity to expand the range of applicability of photo-Fenton process to pH= 5. During the isolation process, membranes of three different pore sizes (300 kDa, 150 kDa and 50 kDa) were employed in order to obtain three batches of OMW-HLS. Four pollutants contained in 2013/39/EC were used as target substances: terbutryn (TBT), diclofenac (DCF), chlorfenvinphos (CVF) and pentachlorophenol (PCP). Results showed that OMW-HLS was able to enhance photo-Fenton at pH = 5, but differences were not significant, either among fractions or with commercial humic substances. Reactions were scaled-up and driven under real sunlight and pollutants removal was faster in the presence of OMW-HLS. Toxicity was monitored according to bioassays based on different organisms or cell lines. Detoxification was observed with and without OMW-HLS, although higher toxicity was detected in the presence of humic acids, most probably due to the surfactant effect, that allows a better contact between pollutant and organism.The authors thank the financial support of the European Union H2020 (2018-2022) (Ref. 776816) Proyect O, and Spanish Ministerio de Ciencia, Innovacion y Universidad (RTI 2018-097997-B-C31) . Paula Garcia Negueroles thanks Spanish Ministerio de Ciencia, Innovacion y Universidades for providing their fellowships BES-2016-0777962.García-Negueroles, P.; García-Ballesteros, S.; Santos-Juanes Jordá, L.; Sabater Marco, C.; Castillo López, M.; López Pérez, MF.; Vicente Candela, R.... (2021). Humic like substances extracted from oil mill wastes in photo-Fenton processes: Characterization, performance and toxicity assesment. Journal of Environmental Chemical Engineering. 9(6):1-8. https://doi.org/10.1016/j.jece.2021.106862189

    Compuestos orgánicos como fotocatalizadores solares para la eliminación de contaminantes en medios acuosos: aplicaciones y estudios fotofísicos

    Full text link
    Como consecuencia de los problemas derivados de la escasez de agua, se está despertando un gran interés en el desarrollo de nuevas técnicas para la depuración de aguas. Una de estas novedosas técnicas es la fotocatálisis que puede emplear la radiación solar como fuente de energía. Con intención de ampliar las posibilidades en la aplicación de la fotocatálisis se va ha estudiar la posibilidad de emplear sensibilizadores orgánicos como fotocatalizadores: el catión 2,4,6-trifeniltiopirilio y el amarillo de acridina G. Ambos fotocatalizadores han conseguido importantes porcentajes de degradación (entre 60 y 80 %) de contaminantes fenólicos modelo como los ácidos ferúlico y cafeico logrando incluso mejores resultados que el dióxido de titanio. Se han escalado estas reacciones a planta piloto empleando la radiación solar directa demostrando la efectividad de estos procesos a escala pre-industrial. Además, los estudios de toxicidad y biodegradabilidad demuestran la total detoxificación del efluente e importantes aumentos en su biodegradabilidad; del orden de entre 6 y 10 veces. Se ha descartado la participación de especies transitorias como el radical hidroxilo o el oxígeno singlete en la oxidación de los contaminantes tratados, mientras que los estudios fotofísicos han demostrado la desactivación de los estados excitados singlete y triplete de los fotocatalizadores a estudio. Conocidos los rendimientos cuánticos de cada estado se han calculado las constantes de desactivación que están en todos los casos limitadas por la difusión en el disolvente. La termodinámica desde cada uno de los estados excitados ha demostrado que el proceso de transferencia electrónica es favorable. Se ha comprobado que la oxidación de los compuestos se lleva a cabo mediante un proceso de transferencia electrónica mayoritariamente desde los estados excitados triplete de los fotocatalizadores.Santos-Juanes Jordá, L. (2008). Compuestos orgánicos como fotocatalizadores solares para la eliminación de contaminantes en medios acuosos: aplicaciones y estudios fotofísicos [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/2642Palanci

    Evaluación de la competencia transversal ‘Comunicación Efectiva’ mediante presentaciones en vídeo

    No full text
    Resumen de los autoresGrado en Ingeniería Mecánica (Universidad Politécnica de Valencia)La comunicación efectiva es una de las competencias transversales que se trabajan y evalúan en la Universistat Politècnica de Valencia (UPV). En dicha competencia se valora la capacidad de transmitir conocimientos e ideas con claridad y utilizando los recursos necesarios para ello. Se decidió evaluar esta competencia con la realización de presentaciones orales individuales grabadas en formato video para que se permitiera su visionado y evaluación fuera del horario docente. Durante las clases de esta asignatura (Máquinas Térmicas 3º Grado Ingeniería Mecánica) se suele recurrir al visionado de vídeos de pequeña duración para poder entender el funcionamiento de estas máquinas. Por este motivo, este tipo de vídeos no resultan extraños al alumno y en esta actividad se les propuso que hicieran uno explicando las características, funcionamiento, aplicaciones etc., de una máquina térmica comercial. El resultado obtenido fue muy positivo ya que los alumnos fueron receptivos a realizar este tipo de presentaciones y la habilidad y creatividad de algunos alumnos fue enormemente sorprendente y gratificante.ES
    corecore