62,683 research outputs found

    Experimental Signatures of Fermiophobic Higgs bosons

    Get PDF
    The most general Two Higgs Doublet Model potential without explicit CP violation depends on 10 real independent parameters. Excluding spontaneous CP violation results in two 7 parameter models. Although both models give rise to 5 scalar particles and 2 mixing angles, the resulting phenomenology of the scalar sectors is different. If flavour changing neutral currents at tree level are to be avoided, one has, in both cases, four alternative ways of introducing the fermion couplings. In one of these models the mixing angle of the CP even sector can be chosen in such a way that the fermion couplings to the lightest scalar Higgs boson vanishes. At the same time it is possible to suppress the fermion couplings to the charged and pseudo-scalar Higgs bosons by appropriately choosing the mixing angle of the CP odd sector. We investigate the phenomenology of both models in the fermiophobic limit and present the different branching ratios for the decays of the scalar particles. We use the present experimental results from the LEP collider to constrain the models.Comment: 23 pages, 18 figures included, newer experimental data include

    Phonon instability in two-dimensional dipolar Bose-Einstein Condensates

    Full text link
    The partially attractive character of the dipole-dipole interaction leads to phonon instability in dipolar condensates, which is followed by collapse in three-dimensional geometries. We show that the nature of this instability is fundamentally different in two-dimensional condensates, due to the dipole-induced stabilization of two-dimensional bright solitons. As a consequence, a transient gas of attractive solitons is formed, and collapse may be avoided. In the presence of an harmonic confinement, the instability leads to transient pattern formation followed by the creation of stable two-dimensional solitons. This dynamics should be observable in on-going experiments, allowing for the creation of stable two-dimensional solitons for the first time ever in quantum gases.Comment: 4 pages, 4 figure

    Kinklike structures in scalar field theories: from one-field to two-field models

    Get PDF
    In this paper we study the possibility of constructing two-field models from one-field models. The idea is to start with a given one-field model and use the deformation procedure to generate another one-field model, and then couple the two one-field models nontrivially, to get to a two-field model, together with some explicit topological solutions. We show with several distinct examples that the procedure works nicely and can be used generically.Comment: 8 pages; version to appear in Phys. Lett.

    Faraday patterns in dipolar Bose-Einstein condensates

    Full text link
    Faraday patterns can be induced in Bose-Einstein condensates by a periodic modulation of the system nonlinearity. We show that these patterns are remarkably different in dipolar gases with a roton-maxon excitation spectrum. Whereas for non-dipolar gases the pattern size decreases monotonously with the driving frequency, patterns in dipolar gases present, even for shallow roton minima, a highly non trivial frequency dependence characterized by abrupt pattern size transitions, which are especially pronounced when the dipolar interaction is modulated. Faraday patterns constitute hence an optimal tool for revealing the onset of the roton minimum, a major key feature of dipolar gases.Comment: 4 pages, 10 figure
    • …
    corecore