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In this Letter we study the possibility of constructing two-field models from one-field models. The idea
is to start with a given one-field model and use the deformation procedure to generate another one-field
model, and then couple the two one-field models nontrivially, to get to a two-field model, together with
some explicit topological solutions. We show with several distinct examples that the procedure works
nicely and can be used generically.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Topological solutions known as kinks, vortices and monopoles
are of direct interest to several areas of nonlinear science; see, e.g.,
[1–5]. They appear in models describing spontaneous symmetry
breaking, inducing phase transitions that could be used, for in-
stance, to describe cosmic evolution in the early universe. In the
simplest case of kinks, one usually requires a single real scalar
field, which in the presence of spontaneous symmetry breaking
can be used to mimic the Higgs field [1,2] or to map degrees of
freedom in polymers [3] and in Bose–Einstein condensates [5].

The basic model described by a real scalar field can be fur-
ther extended to the case of two real scalar fields, giving rise
to more sophisticated models and topological structures, again of
great interest to nonlinear science. However, the two-field models
are much harder to be solved, and for this reason in the current
work we investigate the presence of defect structures in mod-
els described by two real scalar fields, owing to construct new
models, together with the respective topological solutions. We con-
centrate on kinks, which are classically stable static solutions that
appear when the potential is a non-negative function of the scalar
fields that define the model under consideration. The models that
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we consider admit Bogomolnyi–Prasad–Sommerfeld solutions [6],
known as BPS states, which solve first-order differential equations,
leading us with bosonic portions of more sophisticated super-
symmetric theories. Also, the presence of two real scalar fields
makes the investigation more realistic, enhancing the power for
applications in a diversity of scenarios, as one can see, e.g., in
Refs. [1,2,4–23] and in other works quoted therein.

A key issue concerning the presence of defect structures in
models engendering two real scalar fields is that one has to solve
the equations of motion, which are two coupled second-order or-
dinary nonlinear differential equations. To help dealing with this,
the trial orbit method was proposed in [8], but there one faces an
intrinsic difficulty, which concerns the presence of coupled second-
order differential equations. This method was later shown to be
very efficient, when adapted to first-order differential equations,
which appear in the search of BPS states [6], valid when the po-
tential V is non-negative and can be written as the derivative of
another function, which we identify as W . This is explained in
Ref. [20], and we also quote [24] for related investigations on this
issue.

Our main motivation in the present work is to use the defor-
mation procedure introduced in [25], taking it to construct models
described by two real scalar fields, starting from a simpler model,
described by a single real scalar field. As we are going to show be-
low, it is possible to implement a general procedure, from which
one starts with a single real scalar field, and use it to construct
systems described by two real scalar fields. The approach relies
on deforming the one-field model, to get another one-field model,
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and then coupling these two one-field model to end up with a
two-field model, which we then solve easily.

An important issue related to the current work is that models
described by two fields are more sophisticated and can describe
junctions of defects [13–18]. Also, the procedure is of direct in-
terest to generate braneworld solutions, in a five-dimensional AdS
geometry with an extra dimension of infinite extent, and to pro-
duce bifurcation and pattern changing [26].

For pedagogical reasons, we organize the work as follows: we
start the investigation with one and two real scalar field models,
briefly reviewing the BPS approach and some general aspects about
the deformation procedure in Sections 2 and 3, respectively. In Sec-
tion 4 we introduce the method and we study several examples in
Section 5. We end the work in Section 6, where we include some
comments and conclusions.

2. Generalities

Let us first review some aspects relative to one and two real
scalar fields in Minkowski spacetime. First, we introduce the La-
grangian density

L = 1

2
∂μφ∂μφ − V (φ), (1)

with μ = 0,1, ∂μ = ∂/∂xμ , xμ = (x0 = t, x1 = x) and φ = φ(x, t)
stands for the real scalar field. We work with dimensionless fields
and coordinates. By minimizing the action, we find the equation of
motion

φ̈ − φ′′ = −∂V

∂φ
, (2)

where we are using the standard notation, with dots representing
derivatives with respect to time and primes standing for deriva-
tives relative to the spatial coordinate. If we work with static solu-
tions, we are led to

φ′′ = ∂V

∂φ
. (3)

Now, we use the function W = W (φ) to write V (φ) as

V (φ) = 1

2
W 2

φ, (4)

with

Wφ = dW

dφ
. (5)

Here it is straightforward to derive that

φ′ = ±Wφ, (6)

are first-order differential equations which solve the equation of
motion.

The energy density for static solution can be written in the
form

ε(x) = 1

2
φ′ 2 + 1

2
W 2

φ

= 1

2

(
φ′ ∓ Wφ

)2 ± dW

dx
. (7)

Thus, the minimum energy configuration represents defect struc-
ture that solves the first-order equation (6) and has energy given
by

EBPS = ∣∣W (
φ(∞)

) − W
(
φ(−∞)

)∣∣. (8)
The same idea works for two scalar fields. In this case we in-
troduce the model described by the two fields, φ(x, t) and χ(x, t),
in the form

L = 1

2
∂μφ∂μφ + 1

2
∂μχ∂μχ − V (φ,χ). (9)

We deal with static fields, and the equations of motion become

φ′′ = ∂V

∂φ
, χ ′′ = ∂V

∂χ
. (10)

We consider the potential in the form

V (φ,χ) = 1

2
W 2

φ + 1

2
W 2

χ , (11)

and now the first-order equations can be written in the form

φ′ = ±Wφ, χ ′ = ±Wχ . (12)

Here the energy density is given by

ε(x) = 1

2
φ′ 2 + 1

2
χ ′ 2 + 1

2
W 2

φ + 1

2
W 2

χ

= 1

2

(
φ′ ∓ Wφ

)2 + 1

2

(
χ ′ ∓ Wχ

)2 ± dW

dx
, (13)

and we see the energy is minimized for solutions to the first-order
equations (12), attaining the value

EBPS = ∣∣W (
φ(∞),χ(∞)

) − W
(
φ(−∞),χ(−∞)

)∣∣. (14)

An interesting aspect about the two-field model is that we can
use the integrating factor to determine an analytical orbit equation,
relating the two fields φ(x, t) and χ(x, t). In order to implement
it, let us work with the first-order equations (12); we use them to
write

φχ = dφ

dχ
= Wφ(φ,χ)

Wχ (φ,χ)
. (15)

This is a central point in this work, which have inspired us to
propose and solve the two-field models that we investigate in Sec-
tions 4 and 5.

3. Deformation procedure

Let us now review the main features of the deformation proce-
dure, as given in Ref. [25]. We consider the model

L = 1

2
∂μφ∂μφ − V (φ), (16)

where

V (φ) = 1

2
W 2

φ (17)

and

φ′ = Wφ(φ). (18)

We introduce another one-field model, described by

Ld = 1

2
∂μχ∂μχ − U (χ), (19)

where

U (χ) = 1

2
Wχ (20)

and

χ ′ = Wχ (χ). (21)
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The deformation procedure requires that the two fields are related
to each other through the deformation function, that is, we sup-
pose that there is an invertible function f (χ) such that

φ = f (χ), (22)

Thus, we get

φ′ = df

dχ
χ ′. (23)

For the potential U (χ) we use

U (χ) = V (φ → χ)

f 2
χ

, (24)

and now we can write

Wφ(φ → χ) = Wφ(χ) = df

dχ
Wχ (χ). (25)

4. The new method

The procedure that we want to introduce is based in the state-
ment that, if we use the above equations (23) and (25), we can
write

df

dχ
= φ′(χ)

χ ′(χ)
= dφ

dχ
= Wφ(χ)

Wχ (χ)
. (26)

We see that this structure is similar to the one presented in
Eq. (15), for the two-field model. Thus, we get inspiration on this
to include the key idea of our method, which relies on the use of
the deformation function in order to rewrite (26) as

dφ

dχ
= Wφ(φ,χ)

Wχ (φ,χ)
, (27)

which would give us an orbit relation for the two-field model
which we are proposing. To make this idea to work, we first rec-
ognize that the first-order differential equation (18) can be written
in one of the three distinct but equivalent ways

φ′ = Wφ(φ), φ′ = Wφ(χ), φ′ = Wφ(φ,χ), (28)

where in the second expression we have changed φ → f (χ) every-
where, to make Wφ a function of χ alone, and in the third ex-
pression we have changed φ → f (χ) partially, that is, we have
changed the field φ which appear in Wφ(φ) in a particular way,
making Wφ a specific function of the two fields φ and χ , cou-
pling the two fields. This is the key step of the method, and we
illustrate the issue as follows: if Wφ(φ) contains the term φ3, for
instance, we can write φ3 = φ × φ2, and we can change this as
φ × f 2(χ) or φ2 × f (χ), introducing distinct couplings between
the two fields, leading to distinct models. The same procedure can
be used for (21), and we get

χ ′ = Wχ (χ), χ ′ = Wχ (φ), χ ′ = Wχ (φ,χ). (29)

Since the third step in the above two expressions (28) and (29)
can be implemented at will, we now work to construct a mecha-
nism to control the procedure as follows: we introduce three sets
of three real parameters, a1,a2,a3, b1,b2,b3, and c1, c2, c3, such
that a1 + a2 + a3 = 1, b1 + b2 + b3 = 1, and c1 + c2 + c3 = 0. We
then make the changes Wφ → a1Wφ(χ)+ a2Wφ(φ,χ)+ a3Wφ(φ)

and Wχ → b1Wχ (χ) + b2Wχ (φ,χ) + b3Wχ (φ), and we write

dφ

dχ
= Wφ

Wχ

= a1 Wφ(χ) + a2 Wφ(φ,χ) + a3 Wφ(φ) + c1 g(χ) + c2 g(φ,χ) + c3 g(φ)

b1 Wχ (χ) + b2 Wχ (φ,χ) + b3 Wχ (φ)
,

(30)
where g(φ) = g(χ) = g(φ,χ) is in principle an arbitrary function,
constructed in the same way we did to write the three expressions
for Wφ and Wχ . Instead of adding the term c1 g(χ) + c2 g(φ,χ) +
c3 g(φ) to the numerator of (30), we could add it to the denomina-
tor, but this would only change the role between the two fields φ

and χ . The specific form of g will be obtained from the constraint
to be given below, obtained from the requirement that the poten-
tial of the two-field model is described by the function W (φ,χ)

which obeys

Wφχ = Wχφ. (31)

Since we are searching for two-field models, the two fields
must couple with each other, so we have to write Wφ(φ,χ) and
Wχ (φ,χ) in the form of products involving the two fields φ

and χ .
We see from the above expression (30) that we are chang-

ing Wχ for

b1Wχ (χ) + b2Wχ (φ,χ) + b3Wχ (φ). (32)

Also, we are changing Wφ for

a1Wφ(χ) + a2Wφ(φ,χ) + a3Wφ(φ)

+ c1 g(χ) + c2 g(φ,χ) + c3 g(φ). (33)

However, we have to impose (31), which leads us with the con-
straint

b2Wχφ(φ,χ) + b3Wχφ(φ)

= a1Wφχ (χ) + a2Wφχ (φ,χ) + c1 gχ (χ) + c2 gχ (φ,χ) (34)

which is used to calculate the function g , since we already know
both Wφ and Wχ . The procedure allows us to determine the fi-
nal form for W (φ,χ), to define the proposed two-field model,
together with the corresponding defect structure it comprises, by
construction. This ends the procedure, so we focus on some exam-
ples in the next section.

5. Examples

To see how the method works, let us now illustrate the proce-
dure with several examples, which we describe below.

5.1. Example 1: φ4 versus χ4

The idea here is to construct one two-field model from two
one-field models, having fourth-order power in each field. We
start considering the one-field model, described by the real scalar
field φ, with W such that

φ′ = Wφ = a
(
1 − φ2), (35)

which gives the kinklike solution

φ(x) = tanh(ax). (36)

Here a is a real parameter, dimensionless. This is the standard φ4

model, with spontaneous symmetry breaking and we are using di-
mensionless units.

Now, let us deform this model to get to another one-field
model. We consider the deformation function that follows

φ = f (χ) =
√

1 − χ2

2
, (37)
b
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where b is another parameter, which controls the deformation
function. This leads us to the first-order equation

χ ′ = Wχ = −aχ

√
1 − χ2

b2
. (38)

The solution is now given by

χ(x) = b sech(ax). (39)

The next step is to write the three distinct forms of the first-
order differential equations, for both φ and χ . We use the defor-
mation function to write

Wφ(φ) = a
(
1 − φ2), (40a)

Wφ(χ) = a

b2
χ2, (40b)

Wφ(φ,χ) = a

b
χ

√
1 − φ2, (40c)

as well as

Wχ (χ) = −aχ

√
1 − χ2

b2
, (41a)

Wχ (φ) = −abφ

√
1 − φ2, (41b)

Wχ (φ,χ) = −aχφ. (41c)

If we want to avoid the presence of the square root in the final
expression of the potential, we consider a2 = b1 = b3 = 0. Also, we
take c2 = 0 in (33), and so we have a1 + a3 = 1, b2 = 1, and c1 =
−c3. Therefore, by using the constraint (34) we determine that

g(χ) = −1

2

a

c1

(
1 + 2

a1

b2

)
χ2, (42)

and the deformation function allows us to obtain

g(φ) = −1

2

ab2

c1

(
1 + 2

a1

b2

)(
1 − φ2). (43)

Putting this results back into (33), we find

Wφ = −a

2
χ2 + a

(
1 + b2

2

)(
1 − φ2), (44)

and from (32), we have

Wχ = −aχφ. (45)

Thus, we can perform simple integrations to determine the final
form of our two scalar fields superpotential, which is

W (φ,χ) = a

(
1 + 1

2
b2

)(
φ − 1

3
φ3

)
− 1

2
aφχ2. (46)

This is the function which defines the two-field model. And more,
the model has the static solution

φ(x) = tanh(ax), χ(x) = b sech(ax). (47)

We see that if we make the identification

a = 2r and b = ±
√

1

r
− 2 (48)

with r ∈ (0,1/2) we get

Wr(φ,χ) = φ − 1

3
φ3 − rφχ2, (49)

and the solutions
φ(x) = tanh(2rx), (50a)

χ(x) = ±
√

1

r
− 2 sech(2rx). (50b)

This model was investigated before and used in several distinct
applications; see, e.g., Refs. [11,17,19].

5.2. Example 2: φ4 versus χ6

The next example is constructed through a combination be-
tween φ4 and χ6 models. Here, we start with

φ′ = Wφ = a2 − (φ − a)2, (51)

which gives the defect structure

φ(x) = a + a tanh(ax). (52)

Moreover, we consider the deformation function

φ = f (χ) = 2a − a

b2
χ2, (53)

thus, by applying the deformation method we obtain the first-
order differential equation

χ ′ = Wχ = −a

2
χ

(
2 − χ2

b2

)
, (54)

with the topological solution

χ(x) = b
√

1 − tanh(ax). (55)

The procedure requires that we write

Wφ(φ) = a2 − (φ − a)2, Wφ(χ) = a2

b2

(
2χ2 − χ4

b2

)
,

Wφ(φ,χ) = a2χ2

b2

(
χ2

b2
+ 2

φ − a

a

)
, (56)

and

Wχ (χ) = −a

2

(
2 − χ2

b2

)
χ,

Wχ (φ,χ) = −a

2

(
1 + φ − a

a

)
χ. (57)

Here we used b3 = 0, since we want to avoid the square root in
the two-field model, then b1 + b2 = 1. We also choose c1 = 0, so
we have c3 = −c2; the constraint (34) then gives

g(φ,χ) = − b2

4c2
χ2 − a2a2

c2

χ2

b2

(
χ2

b2
+ 2

φ − a

a

)

− a1

c2

a2

b2

(
2χ2 − χ4

b2

)
, (58)

and we can use the deformation function to rewrite g(φ,χ) as
follows

g(φ) = −b2b2

4c2

(
1 − φ − a

a

)
− a2(a2 + a1)

c2

(
1 − (φ − a)2

a2

)
. (59)

With the above result, we then have all the ingredients to de-
termine W (φ,χ). After some calculations we get

W (φ,χ) = − (1 − b2)a

2

(
χ2 − χ4

4b2

)
− b2φ

χ2

4

+ b2b2 (
2φ − φ2 )

+
(

aφ2 − φ3 )
. (60)
4 2a 3
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Several interesting models can be determined by taking dif-
ferent values for a, b, and b2. In particular, if we choose b2 = 2,
a = ±1/2 and b2 = 1, we get

W (φ,χ) = φ − φ3

3
− χ2

4
φ, (61)

which is the previous model, for r = 1/4; see (49). Here, however,
we have the solutions

φ(x) = −1

2
+ 1

2
tanh

(
x

2

)
, χ(x) = ±

√
2 + 2 tanh

(
x

2

)
, (62)

and

φ(x) = 1

2
+ 1

2
tanh

(
x

2

)
, χ(x) = ±

√
2 − 2 tanh

(
x

2

)
. (63)

5.3. Example 3: φ4 versus χ3

In this example we explore models having third and fourth
power in the fields. We start with

φ′ = Wφ = 1 − φ2. (64)

The solution is

φ(x) = tanh(x). (65)

We consider the deformation function,

φ =
√

1 − χ

a
, (66)

and we obtain

χ ′ = Wχ = −2χ

√
1 − χ

a
, (67)

which is solved by

χ(x) = a sech2(x). (68)

Using the orbit (66), we obtain the equations

Wφ(φ) = 1 − φ2, Wφ(χ) = χ

a
, (69)

and

Wχ (φ,χ) = −2φχ, Wχ (φ) = −2aφ
(
1 − φ2), (70)

since we are avoiding the presence of the square root in the
two-field model. These choices lead to a2 = b1 = c1 = 0, then
a3 + a1 = 1, b2 + b3 = 1, and c3 = −c2. Thus, we can write the
function g(φ,χ) as

g(φ,χ) = −2ab3

c2

(
1 − 3φ2)χ − b2

c2
χ2 − a1

ac2
χ. (71)

We can use the deformation function to rewrite it in terms of
the φ field alone, in the form

g(φ) =
(

−2a2b3

c2

(
1 − 3φ2) − a2b2

c2

(
1 − φ2) − a1

c2

)
× (

1 − φ2). (72)

With these results we find

W (φ,χ) = (
1 + 2a2 − a2b2

)
φ + (

1 + 8a2 − 6a2b2
)φ3

3
− 2a(1 − b2)

(
1 − 3φ2)φχ − b2φχ2

− (6 − 5b2)a
2 φ5

, (73)

5

which leads to the expressions

Wφ = (
1 − φ2)(1 + (2 − b2)a

2 − (6 − 5b2)a
2φ2)

− 2a(1 − b2)
(
1 − 3φ2)χ − b2χ

2, (74)

and

Wχ = −2a(1 − b2)
(
1 − 3φ2)φ − 2b2φχ. (75)

These results allow us to calculate the potential V (φ,χ), as dic-
tated by Eq. (11).

5.4. Example 4: p-model

Our final example describes a generalization of the p-model, as
introduced in [27]. Here, we start with

φ′ = Wφ = p
(
φ(p−1)/p − φ(p+1)/p)

(76)

where p = 1,3,5, . . . is odd integer. Note that for p = 1 we get
back to the standard φ4 model. In general, however, we have an
interesting model, and we have the 2-kink solution

φ(x) = tanhp(x), (77)

as found in [27]. This model is more complicated then the previous
models, so we perform the simpler deformation

φ = f (χ) = χ

a
, (78)

which leads us to

χ ′ = Wχ = pa
[
(χ/a)(p−1)/p − (χ/a)(p+1)/p]

, (79)

with analytical solution given by

χ(x) = a tanhp(x). (80)

The next step is to write the first-order equations; they are con-
structed with the distinct functions

Wφ(φ) = p
(
φ(p−1)/p − φ(p+1)/p)

,

Wφ(χ) = p

[(
χ

a

)(p−1)/p

−
(

χ

a

)(p+1)/p]
,

Wφ(φ,χ) = p

[(
χ

a

)(p−1)/p

− φ

(
χ

a

)1/p]
, (81)

and

Wχ (χ) = pa

[(
χ

a

)(p−1)/p

−
(

χ

a

)(p+1)/p]
,

Wχ (φ) = pa
(
φ(p−1)/p − φ(p+1)/p)

,

Wχ (φ,χ) = pa

[(
χ

a

)(p−1)/p

− φ

(
χ

a

)1/p]
. (82)

Therefore, if we consider the constraint with c1 = 0 and b3 = 0 to
avoid negative exponent in the potential, we set c3 = −c2 = 0 and
b1 + b2 = 1, in order to obtain

g(φ,χ) = −b2

c2

p2a2

p + 1

(
χ

a

)(p+1)/p

− a2

c2
p

[(
χ

a

)(p−1)/p

− φ

(
χ

a

)1/p]

− a1
p

[(
χ

)(p−1)/p

−
(

χ
)(p+1)/p]

. (83)

c2 a a
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As before, we can use the deformation function to write

g(φ) = −b2

c2

p2a2

p + 1
φ(p+1)/p − a2 + a1

c2
p
(
φ(p−1)/p − φ(p+1)/p)

.

(84)

We follow the above procedure to obtain

W (φ,χ)

= b1 p2a2
[

1

2p − 1

(
χ

a

)(2p−1)/p

− 1

2p + 1

(
χ

a

)(2p+1)/p]

+ b2 p3 a2φ(2p+1)/p

(p + 1)(2p + 1)

+ b2 p2a2
[

1

2p − 1

(
χ

a

)(2p−1)/p

− φ

p + 1

(
χ

a

)(p+1)/p]

+ p2
[

φ(2p−1)/p

2p − 1
− φ(2p+1)/p

2p + 1

]
. (85)

These results allow us to construct the pair

Wφ = p
(
φ(p−1)/p − φ(p+1)/p)

+ b2 p2a2

p + 1

[
φ(p+1)/p −

(
χ

a

)(p+1)/p]
, (86)

and

Wχ = b1 pa

[(
χ

a

)(p−1)/p

−
(

χ

a

)(p+1)/p]

+ b2 pa

[(
χ

a

)(p−1)/p

− φ

(
χ

a

)1/p]
. (87)

Consequently, we are able to determine the potential V (φ,χ) and
construct the corresponding two-field model. It is interesting to
note that if we take p = 3, b1 = 0, b2 = 1 and a = 1 in Wφ

and Wχ , we get to

Wφ = 3φ2/3 − 3

4
φ4/3 − 9

4
χ4/3,

Wχ = 3χ2/3 − 3φχ1/3, (88)

and so we get

W (φ,χ) = 9

5

(
φ5/3 + χ5/3) − 9

28
φ7/3 − 9

4
φχ4/3. (89)

The solutions in this case are

φ(x) = tanh3(x) and χ(x) = tanh3(x). (90)

This example shows for the first time an interesting model where
the topological solution appears as a coupling of two 2-kink struc-
tures. Evidently, we can obtain many other new models for distinct
values of p and the other parameters.

6. Final comments

In this work we proposed a new procedure to generate two-
field models. The method starts with a given one-field model,
which is used to generate another one-field model, via the de-
formation procedure introduced in Ref. [25]. We then couple the
two one-field model to generate a two-field model. The procedure
is illustrated with several distinct examples, to show how efficient
the method is, to construct new two-field models. An important
advantage of the procedure is that it automatically gives some an-
alytical solutions for these new systems.

The current investigation poses some interesting issues, one of
them concerning extensions of the method to construct models de-
scribed by three or more real scalar fields, and models described
by non-polynomial potentials. Another issue is related to cosmol-
ogy, and the two-field models can be used to model interactions
between dark matter and dark energy, as investigated for instance
in Ref. [28]. Some of these issues are now under consideration, and
we hope to report on them in the near future.
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