492 research outputs found

    Molecular regimes in ultracold Fermi gases

    Full text link
    The use of Feshbach resonances for tuning the interparticle interaction in ultracold Fermi gases has led to remarkable developments, in particular to the creation and Bose-Einstein condensation of weakly bound diatomic molecules of fermionic atoms. These are the largest diatomic molecules obtained so far, with a size of the order of thousands of angstroms. They represent novel composite bosons, which exhibit features of Fermi statistics at short intermolecular distances. Being highly excited, these molecules are remarkably stable with respect to collisional relaxation, which is a consequence of the Pauli exclusion principle for identical fermionic atoms. The purpose of this review is to introduce theoretical approaches and describe the physics of molecular regimes in two-component Fermi gases and Fermi-Fermi mixtures, focusing attention on quantum statistical effects.Comment: Chapter of the book: "Cold Molecules: Theory, Experiment, Applications" edited by R. V. Krems, B. Friedrich and W. C. Stwalley (publication expected in March 2009

    Adultrap® trap optimized for collecting vector mosquito eggs, larvae and adults

    Get PDF
    ABSTRACT The productivity of the Adultrap® trap was compared to that of modified adultrap traps. Two structural changes were tested, a cover was placed at the entrance of the trap at two different heights. A comparison was also made with traps containing hydrogel to replace the water in the reservoir. The positivity rates of all the trap types were calculated and compared. The hydrogel models were more productive because they collected eggs, larvae, and adults. The trap that removed the protective screen and replaced the water with the hydrogel was 18.5 times larger than the original trap (p = 0.001). There was an increase in the productivity for the total collection of mosquitoes. The collection of eggs, larvae, and adults can contribute to the construction of more robust infestation indices. In addition, it allows for the collection of live specimens and the development of studies

    Metastable neon collisions: anisotropy and scattering length

    Get PDF
    In this paper we investigate the effective scattering length aa of spin-polarized Ne*. Due to its anisotropic electrostatic interaction, its scattering length is determined by five interaction potentials instead of one, even in the spin-polarized case, a unique property among the Bose condensed species and candidates. Because the interaction potentials of Ne* are not known accurately enough to predict the value of the scattering length, we investigate the behavior of aa as a function of the five phase integrals corresponding to the five interaction potentials. We find that the scattering length has five resonances instead of only one and cannot be described by a simple gas-kinetic approach or the DIS approximation. However, the probability for finding a positive or large value of the scattering length is not enhanced compared to the single potential case. The complex behavior of aa is studied by comparing a quantum mechanical five-channel numerical calculation to simpler two-channel models. We find that the induced dipole-dipole interaction is responsible for coupling between the different |\Omega> states, resulting in an inhomogeneous shift of the resonance positions and widths in the quantum mechanical calculation as compared to the DIS approach. The dependence of the resonance positions and widths on the input potentials turns out to be rather straightforward. The existence of two bosonic isotopes of Ne* enables us to choose the isotope with the most favorable scattering length for efficient evaporative cooling towards the Bose-Einstein Condensation transition, greatly enhancing the feasibility to reach this transition.Comment: 13pages, 8 eps figures, analytical model in section V has been remove

    Photoionization of ultracold and Bose-Einstein condensed Rb atoms

    Full text link
    Photoionization of a cold atomic sample offers intriguing possibilities to observe collective effects at extremely low temperatures. Irradiation of a rubidium condensate and of cold rubidium atoms within a magneto-optical trap with laser pulses ionizing through 1-photon and 2-photon absorption processes has been performed. Losses and modifications in the density profile of the remaining trapped cold cloud or the remaining condensate sample have been examined as function of the ionizing laser parameters. Ionization cross-sections were measured for atoms in a MOT, while in magnetic traps losses larger than those expected for ionization process were measured.Comment: 9 pages, 7 figure

    Superfluid pairing in a polarized dipolar Fermi gas

    Full text link
    We calculate the critical temperature of a superfluid phase transition in a polarized Fermi gas of dipolar particles. In this case the order parameter is anisotropic and has a nontrivial energy dependence. Cooper pairs do not have a definite value of the angular momentum and are coherent superpositions of all odd angular momenta. Our results describe prospects for achieving the superfluid transition in single-component gases of fermionic polar molecules.Comment: 12 pages, 2 figure

    Measurements of the SUSY Higgs self-couplings and the reconstruction of the Higgs potential

    Get PDF
    We address the issue of the reconstruction of the scalar potential of a two-Higgs doublet model having in mind that of the MSSM. We first consider the general CP conserving dim-4 effective potential. To fully reconstruct this potential, we show that even if all the Higgs masses and their couplings to the standard model particles are measured one needs not only to measure certain trilinear Higgs self-couplings but some of the quartic couplings as well. We also advocate expressing the Higgs self couplings in the mass basis. We show explicitly, that in the so-called decoupling limit, the most easily accessible Higgs self-couplings are given in terms of the Higgs mass while all other dependencies on the parameters of the general effective potential are screened. This helps also easily explain how, in the MSSM, the largest radiative corrections which affect these self couplings are reabsorbed by using the corrected Higgs mass. We also extend our analysis to higher order operators in the effective Higgs potential. While the above screening properties do not hold, we argue that these effects must be small and may not be measured considering the foreseen poor experimental precision in the extraction of the SUSY Higgs self-couplings.Comment: 25 pages, 3 figure
    • …
    corecore