54,879 research outputs found

    Mass distribution and structural parameters of Small Magellanic Cloud star clusters

    Full text link
    In this work we estimate, for the first time, the total masses and mass function slopes of a sample of 29 young and intermediate-age SMC clusters from CCD Washington photometry. We also derive age, interstellar reddening and structural parameters for most of the studied clusters by employing a statistical method to remove the unavoidable field star contamination. Only these 29 clusters out of 68 originally analysed cluster candidates present stellar overdensities and coherent distribution in their colour-magnitude diagrams compatible with the existence of a genuine star cluster. We employed simple stellar population models to derive general equations for estimating the cluster mass based only on its age and integrated light in the B, V, I, C and T1 filter. These equations were tested against mass values computed from luminosity functions, showing an excellent agreement. The sample contains clusters with ages between 60 Myr and 3 Gyr and masses between 300 and 3000 Mo distributed between ~0.5 deg. and ~2 deg. from the SMC optical centre. We determined mass function slopes for 24 clusters, of which 19 have slopes compatible with that of Kroupa IMF (2.3 +/- 0.7), considering the uncertainties. The remaining clusters - H86-188, H86-190, K47, K63 and NGC242 - showed flatter MFs. Additionally, only clusters with masses lower than ~1000 Mo and flatter MF were found within ~0.6 deg. from the SMC rotational centre.Comment: 12 pages, 19 figures. Includes another 29 full-page figures of supplementary material. Accepted for publication in the MNRA

    On FRW Model in Conformal Teleparallel Gravity

    Full text link
    In this paper we use the conformal teleparallel gravity to study an isotropic and homogeneous Universe which is settled by the FRW metric. We solve the field equations and we obtain the behavior of some cosmological parameters such as scale factor, deceleration parameter and the energy density of the perfect fluid which is the matter field of our model. The field equations, that we called modified Friedmann equations, allow us to define a dark fluid, with dark energy density and dark pressure, responsible for the acceleration in the Universe.Comment: Accepted in EPJ

    On Lorentz violation in eβˆ’β€‰β£β€‰β£+ ⁣e+β€‰β£β†’β€‰β£ΞΌβˆ’β€‰β£β€‰β£+ ⁣μ+e^{-}\!\!+\!e^{+}\!\rightarrow\!\mu^{-}\!\!+\!\mu^{+} scattering at finite temperature

    Full text link
    Small violation of Lorentz and CPT symmetries may emerge in models unifying gravity with other forces of nature. An extension of the standard model with all possible terms that violate Lorentz and CPT symmetries are included. Here a CPT-even non-minimal coupling term is added to the covariant derivative. This leads to a new interaction term that breaks the Lorentz symmetry. Our main objective is to calculate the cross section for the eβˆ’β€‰β£β€‰β£+ ⁣e+β€‰β£β†’β€‰β£ΞΌβˆ’β€‰β£β€‰β£+ ⁣μ+e^{-}\!\!+\!e^{+}\!\rightarrow\!\mu^{-}\!\!+\!\mu^{+} scattering in order to investigate any violation of Lorentz and/or CPT symmetry at finite temperature. Thermo Field Dynamics formalism is used to consider finite temperature effects.Comment: 12 pages, 1 figure, accepted for publication in PL
    • …
    corecore