31,222 research outputs found

    Computer simulations of an impurity in a granular gas under planar Couette flow

    Full text link
    We present in this work results from numerical solutions, obtained by means of the direct simulation Monte Carlo (DSMC) method, of the Boltzmann and Boltzmann--Lorentz equations for an impurity immersed in a granular gas under planar Couette flow. The DSMC results are compared with the exact solution of a recent kinetic model for the same problem. The results confirm that, in steady states and over a wide range of parameter values, the state of the impurity is enslaved to that of the host gas: it follows the same flow velocity profile, its concentration (relative to that of the granular gas) is constant in the bulk region, and the impurity/gas temperature ratio is also constant. We determine also the rheological properties and nonlinear hydrodynamic transport coefficients for the impurity, finding a good semi-quantitative agreement between the DSMC results and the theoretical predictions.Comment: 23 pages, 11 figures; v2: minor change

    Constraining planet structure and composition from stellar chemistry: trends in different stellar populations

    Get PDF
    The chemical composition of stars that have orbiting planets provides important clues about the frequency, architecture, and composition of exoplanet systems. We explore the possibility that stars from different galactic populations that have different intrinsic abundance ratios may produce planets with a different overall composition. We compiled abundances for Fe, O, C, Mg, and Si in a large sample of solar neighbourhood stars that belong to different galactic populations. We then used a simple stoichiometric model to predict the expected iron-to-silicate mass fraction and water mass fraction of the planet building blocks, as well as the summed mass percentage of all heavy elements in the disc. Assuming that overall the chemical composition of the planet building blocks will be reflected in the composition of the formed planets, we show that according to our model, discs around stars from different galactic populations, as well as around stars from different regions in the Galaxy, are expected to form rocky planets with significantly different iron-to-silicate mass fractions. The available water mass fraction also changes significantly from one galactic population to another. The results may be used to set constraints for models of planet formation and chemical composition. Furthermore, the results may have impact on our understanding of the frequency of planets in the Galaxy, as well as on the existence of conditions for habitability.Comment: Accepted for publication in Astronomy & Astrophysic

    CNO behaviour in planet-harbouring stars. II. Carbon abundances in stars with and without planets using the CH band

    Full text link
    Context. Carbon, oxygen and nitrogen (CNO) are key elements in stellar formation and evolution, and their abundances should also have a significant impact on planetary formation and evolution. Aims. We present a detailed spectroscopic analysis of 1110 solar-type stars, 143 of which are known to have planetary companions. We have determined the carbon abundances of these stars and investigate a possible connection between C and the presence of planetary companions. Methods. We used the HARPS spectrograph to obtain high-resolution optical spectra of our targets. Spectral synthesis of the CH band at 4300\AA was performed with the spectral synthesis codes MOOG and FITTING. Results. We have studied carbon in several reliable spectral windows and have obtained abundances and distributions that show that planet host stars are carbon rich when compared to single stars, a signature caused by the known metal-rich nature of stars with planets. We find no different behaviour when separating the stars by the mass of the planetary companion. Conclusions. We conclude that reliable carbon abundances can be derived for solar-type stars from the CH band at 4300\AA. We confirm two different slope trends for [C/Fe] with [Fe/H] because the behaviour is opposite for stars above and below solar values. We observe a flat distribution of the [C/Fe] ratio for all planetary masses, a finding that apparently excludes any clear connection between the [C/Fe] abundance ratio and planetary mass.Comment: 10 pages, 10 figures. Accepted to A&

    C/O vs Mg/Si ratios in solar type stars: The HARPS sample

    Full text link
    Aims. We present a detailed study of the Mg/Si and C/O ratios and their importance in determining the mineralogy of planetary companions. Methods. Using 499 solar-like stars from the HARPS sample, we determine C/O and Mg/Si elemental abundance ratios to study the nature of the possible planets formed. We separated the planetary population in low-mass planets ( < 30 M\rm M_{\odot}) and high-mass planets ( > 30 M\rm M_{\odot}) to test for possible relation with the mass. Results. We find a diversity of mineralogical ratios that reveal the different kinds of planetary systems that can be formed, most of them dissimilar to our solar system. The different values of the Mg/Si and C/O ratios can determine different composition of planets formed. We found that 100\% of our planetary sample present C/O < 0.8. 86\% of stars with high-mass companions present 0.8 > C/O > 0.4, while 14\% present C/O values lower than 0.4. Regarding Mg/Si, all stars with low-mass planetary companion showed values between 1 and 2, while 85% of the high-mass companion sample does. The other 15\% showed Mg/Si values below 1. No stars with planets were found with Mg/Si > 2. Planet hosts with low-mass companions present C/O and Mg/Si ratios similar to those found in the Sun, whereas stars with high-mass companions have lower C/O.Comment: 9 pages, 12 figues. Accepted in A&

    Comparação da seleção genômica e fenotípica utilizando indices de seleção em milho.

    Get PDF
    O objetivo deste estudo foi comparar a seleção genômica com a seleção fenotípica, quando esta é realizada utilizando índices de seleção

    Multilocus sequence types of invasive Corynebacterium diphtheriae isolated in the Rio de Janeiro urban area, Brazil

    Get PDF
    Invasive infections caused by Corynebacterium diphtheriae in vaccinated and non-vaccinated individuals have been reported increasingly. In this study we used multilocus sequence typing (MLST) to study genetic relationships between six invasive strains of this bacterium isolated solely in the urban area of Rio de Janeiro, Brazil, during a 10-year period. Of note, all the strains rendered negative results in PCR reactions for the tox gene, and four strains presented an atypical sucrose-fermenting ability. Five strains represented new sequence types. MLST results did not support the hypothesis that invasive (sucrose-positive) strains of C. diphtheriae are part of a single clonal complex. Instead, one of the main findings of the study was that such strains can be normally found in clonal complexes with strains related to non-invasive disease. Comparative analyses with C. diphtheriae isolated in different countries provided further information on the geographical circulation of some sequence types
    corecore