16 research outputs found

    Predictive Value of Ov16 Antibody Prevalence in Different Subpopulations for Elimination of African Onchocerciasis

    Get PDF
    The World Health Organization currently recommends assessing elimination of onchocerciasis by testing whether Ov16 antibody prevalence in children aged 0-9 years is below 0.1%. However, the certainty of evidence for this recommendation is considered to be low. We used the established ONCHOSIM model to investigate the predictive value of different Ov16-antibody prevalence thresholds in various age groups for elimination of onchocerciasis in a variety of endemic settings and for various mass drug administration scenarios. According to our simulations, the predictive value of Ov16 antibody prevalence for elimination depends highly on the precontrol epidemiologic situation, history of mass drug administration, the age group that is sampled, and the chosen Ov16-antibody prevalence threshold. The Ov16 antibody prevalence in children aged 5-14 years performs best in predicting elimination. Appropriate threshold values for this age group start at 2.0% for very highly endemic areas; for lower-endemic areas, even higher threshold values are safe to use. Guidelines can be improved by sampling school-aged children, which also is operationally more feasible than targeting children under age 10 years. The use of higher threshold values allows sampling of substantially fewer children. Further improvement can be achieved by taking a differentiated sampling approach based on precontrol endemicity

    Analysis of age-dependent trends in Ov16 IgG4 seroprevalence to onchocerciasis

    Get PDF
    BACKGROUND: Diagnostics provide a means to measure progress toward disease elimination. Many countries in Africa are approaching elimination of onchocerciasis after successful implementation of mass drug administration programs as well as vector control. An understanding of how markers for infection such as skin snip microfilaria and Onchocerca volvulus-specific seroconversion perform in near-elimination settings informs how to best use these markers. METHODS: All-age participants from 35 villages in Togo were surveyed in 2013 and 2014 for skin snip Onchocerca volvulus microfilaria and IgG4 antibody response by enzyme-linked immunosorbent assay (ELISA) to the Onchocerca volvulus-specific antigen Ov16. A Gaussian mixture model applying the expectation-maximization (EM) algorithm was used to determine seropositivity from Ov16 ELISA data. For a subset of participants (n = 434), polymerase chain reaction (PCR) was performed on the skin snips taken during surveillance. RESULTS: Within the 2,005 participants for which there was Ov16 ELISA data, O. volvulus microfilaremia prevalence and Ov16 seroprevalence were, 2.5 and 19.7 %, respectively, in the total population, and 1.6 and 3.6 % in children under 11. In the subset of 434 specimens for which ELISA, PCR, and microscopy data were generated, it was found that in children under 11 years of age, the anti-Ov16 IgG4 antibody response demonstrate a sensitivity and specificity of 80 and 97 %, respectively, against active infections as determined by combined PCR and microscopy on skin snips. Further analysis was performed in 34 of the 35 villages surveyed. These villages were stratified by all-age seroprevalence into three clusters: < 15 %; 15–20 %; and > 20 %. Age-dependence of seroprevalence for each cluster was best reflected by a two-phase force-of-infection (FOI) catalytic model. In all clusters, the lower of the two phases of FOI was associated with a younger age group, as reflected by the seroconversion rates for each phase. The age at which transition from lower to higher seroconversion, between the two phases of FOI, was found to be highest (older) for the cluster of villages with < 15 % seroprevalence and lowest (younger) for the cluster with the highest all-age seroprevalence. CONCLUSIONS: The anti-Ov16 IgG4 antibody response is an accurate marker for active infection in children under 11 years of age in this population. Applying Ov16 surveillance to a broader age range provides additional valuable information for understanding progression toward elimination and can inform where targeted augmented interventions may be needed. Clustering of villages by all-age sero-surveillance allowed application of a biphasic FOI model to differentiate seroconversion rates for different age groups within the village cluster categories. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13071-016-1623-1) contains supplementary material, which is available to authorized users

    Diagnostic Tests to Support Late-Stage Control Programs for Schistosomiasis and Soil-Transmitted Helminthiases

    No full text
    <div><p>Global efforts to address schistosomiasis and soil-transmitted helminthiases (STH) include deworming programs for school-aged children that are made possible by large-scale drug donations. Decisions on these mass drug administration (MDA) programs currently rely on microscopic examination of clinical specimens to determine the presence of parasite eggs. However, microscopy-based methods are not sensitive to the low-intensity infections that characterize populations that have undergone MDA. Thus, there has been increasing recognition within the schistosomiasis and STH communities of the need for improved diagnostic tools to support late-stage control program decisions, such as when to stop or reduce MDA. Failure to adequately address the need for new diagnostics could jeopardize achievement of the 2020 London Declaration goals. In this report, we assess diagnostic needs and landscape potential solutions and determine appropriate strategies to improve diagnostic testing to support control and elimination programs. Based upon literature reviews and previous input from experts in the schistosomiasis and STH communities, we prioritized two diagnostic use cases for further exploration: to inform MDA-stopping decisions and post-MDA surveillance. To this end, PATH has refined target product profiles (TPPs) for schistosomiasis and STH diagnostics that are applicable to these use cases. We evaluated the limitations of current diagnostic methods with regards to these use cases and identified candidate biomarkers and diagnostics with potential application as new tools. Based on this analysis, there is a need to develop antigen-detecting rapid diagnostic tests (RDTs) with simplified, field-deployable sample preparation for schistosomiasis. Additionally, there is a need for diagnostic tests that are more sensitive than the current methods for STH, which may include either a field-deployable molecular test or a simple, low-cost, rapid antigen-detecting test.</p></div

    The steps required for gold standard microscopy in deworming programs.

    No full text
    <p>In the typical surveillance testing performed to assess the prevalence of helminth infection and the impact of deworming programs, stool samples (or sometimes urine for schistosomiasis) are collected and transported to a nearby laboratory space for microscopic analysis and follow-on reporting. There are numerous factors affecting each step of the process that contribute to making this analysis less than optimal.</p

    A Recombinant Positive Control for Serology Diagnostic Tests Supporting Elimination of Onchocerca volvulus.

    No full text
    Serological assays for human IgG4 to the Onchocerca volvulus antigen Ov16 have been used to confirm elimination of onchocerciasis in much of the Americas and parts of Africa. A standardized source of positive control antibody (human anti-Ov16 IgG4) will ensure the quality of surveillance data using these tests.A recombinant human IgG4 antibody to Ov16 was identified by screening against a synthetic human Fab phage display library and converted into human IgG4. This antibody was developed into different positive control formulations for enzyme-linked immunosorbent assay (ELISA) and rapid diagnostic test (RDT) platforms. Variation in ELISA results and utility as a positive control of the antibody were assessed from multiple laboratories. Temperature and humidity conditions were collected across seven surveillance activities from 2011-2014 to inform stability requirements for RDTs and positive controls. The feasibility of the dried positive control for RDT was evaluated during onchocerciasis surveillance activity in Togo, in 2014. When the anti-Ov16 IgG4 antibody was used as a standard dilution in horseradish peroxidase (HRP) and alkaline phosphatase (AP) ELISAs, the detection limits were approximately 1ng/mL by HRP ELISA and 10ng/mL by AP ELISA. Positive control dilutions and spiked dried blood spots (DBS) produced similar ELISA results. Used as a simple plate normalization control, the positive control antibody may improve ELISA data comparison in the context of inter-laboratory variation. The aggregate temperature and humidity monitor data informed temperature parameters under which the dried positive control was tested and are applicable inputs for testing of diagnostics tools intended for sub-Saharan Africa. As a packaged positive control for Ov16 RDTs, stability of the antibody was demonstrated for over six months at relevant temperatures in the laboratory and for over 15 weeks under field conditions.The recombinant human anti-Ov16 IgG4 antibody-based positive control will benefit inter-laboratory validation of ELISA assays and serve as quality control (QC) reagents for Ov16 RDTs at different points of the supply chain from manufacturer to field use

    Environmental conditions during surveillance activities in Togo 2013 and 2014.

    No full text
    <p>A. Daily temperature profiles (dark grey lines) in degrees Celsius during surveillance activities. The mean temperature is plotted with the bold red line. B. Daily % relative humidity (dark grey lines) cycles during surveillance activities. The mean relative humidity is plotted with the bold green line. C. Frequency of recorded temperature and relative humidity pairs experienced by monitors attached to microscopes used during the surveillance activities. The color scale represents the frequency of observations represented by intense red (least frequent) to intense yellow (most frequent).</p
    corecore