19,329 research outputs found

    Massive "spin-2" theories in arbitrary D≥3D \ge 3 dimensions

    Full text link
    Here we show that in arbitrary dimensions D≥3D\ge 3 there are two families of second order Lagrangians describing massive "spin-2" particles via a nonsymmetric rank-2 tensor. They differ from the usual Fierz-Pauli theory in general. At zero mass one of the families is Weyl invariant. Such massless theory has no particle content in D=3D=3 and gives rise, via master action, to a dual higher order (in derivatives) description of massive spin-2 particles in D=3D=3 where both the second and the fourth order terms are Weyl invariant, contrary to the linearized New Massive Gravity. However, only the fourth order term is invariant under arbitrary antisymmetric shifts. Consequently, the antisymmetric part of the tensor e[μν]e_{[\mu\nu]} propagates at large momentum as 1/p21/p^2 instead of 1/p41/p^4. So, the same kind of obstacle for the renormalizability of the New Massive Gravity reappears in this nonsymmetric higher order description of massive spin-2 particles.Comment: 11 pages, 0 figure

    Massive spin-2 particles via embedment of the Fierz-Pauli equations of motion

    Full text link
    Here we obtain alternative descriptions of massive spin-2 particles by an embedding procedure of the Fierz-Pauli equations of motion. All models are free of ghosts at quadratic level although most of them are of higher order in derivatives. The models that we obtain can be nonlinearly completed in terms of a dynamic and a fixed metric. They include some f(R)f(R) massive gravities recently considered in the literature. In some cases there is an infrared (no derivative) modification of the Fierz-Pauli mass term altogether with higher order terms in derivatives. The analytic structure of the propagator of the corresponding free theories is not affected by the extra terms in the action as compared to the usual second order Fierz-Pauli theory.Comment: 13 page

    Coherent State Path Integrals in the Weyl Representation

    Get PDF
    We construct a representation of the coherent state path integral using the Weyl symbol of the Hamiltonian operator. This representation is very different from the usual path integral forms suggested by Klauder and Skagerstan in \cite{Klau85}, which involve the normal or the antinormal ordering of the Hamiltonian. These different representations, although equivalent quantum mechanically, lead to different semiclassical limits. We show that the semiclassical limit of the coherent state propagator in Weyl representation is involves classical trajectories that are independent on the coherent states width. This propagator is also free from the phase corrections found in \cite{Bar01} for the two Klauder forms and provides an explicit connection between the Wigner and the Husimi representations of the evolution operator.Comment: 23 page

    Fluctuating local moments, itinerant electrons and the magnetocaloric effect: the compositional hypersensitivity of FeRh

    Get PDF
    We describe an ab-initio Disordered Local Moment Theory for materials with quenched static compositional disorder traversing first order magnetic phase transitions. It accounts quantitatively for metamagnetic changes and the magnetocaloric effect. For perfect stoichiometric B2-ordered FeRh, we calculate the transition temperature of the ferromagnetic-antiferromagnetic transition to be Tt=T_t = 495K and a maximum isothermal entropy change in 2 Tesla of ∣ΔS∣=21.1|\Delta S|= 21.1 J~K−1^{-1}~kg−1^{-1}. A large (40\%) component of ∣ΔS∣|\Delta S| is electronic. The transition results from a fine balance of competing electronic effects which is disturbed by small compositional changes - e.g. swapping just 2\% Fe of `defects' onto the Rh sublattice makes TtT_t drop by 290K. This hypersensitivity explains the narrow compositional range of the transition and impurity doping effects.Comment: 11 pages, 4 figure
    • …
    corecore