12 research outputs found

    Chimeric Antigen Receptor Immunotherapy for Solid Tumors: Choosing the Right Ingredients for the Perfect Recipe

    No full text
    Chimeric antigen receptor T cell therapies are revolutionizing the clinical practice of hematological tumors, whereas minimal progresses have been achieved in the solid tumor arena. Multiple reasons have been ascribed to this slower pace: The higher heterogeneity, the hurdles of defining reliable tumor antigens to target, and the broad repertoire of immune escape strategies developed by solid tumors are considered among the major ones. Currently, several CAR therapies are being investigated in preclinical and early clinical trials against solid tumors differing in the type of construct, the cells that are engineered, and the additional signals included with the CAR constructs to overcome solid tumor barriers. Additionally, novel approaches in development aim at overcoming some of the limitations that emerged with the approved therapies, such as large-scale manufacturing, duration of manufacturing, and logistical issues. In this review, we analyze the advantages and challenges of the different approaches under development, balancing the scientific evidences supporting specific choices with the manufacturing and regulatory issues that are essential for their further clinical development

    Type I consensus IFN (IFN-con1) gene transfer into KSHV/HHV-8-infected BCBL-1 cells causes inhibition of viral lytic cycle activation via induction of apoptosis and abrogates tumorigenicity in SCID mice

    No full text
    In this study, we investigated the effects of human type I consensus interferon (IFN-con1) (Amgen) gene transfer into body cavity-based lymphomas (BCBL)-1 cells, which are latently infected with Kaposi's sarcoma-associated herpesvirus (KSHV) human herpesvirus-8 (HHV-8). Both the basal and 12-O- tetradecanoyl phorbol-13-acetate (TPA)-stimulated production of KSHV/HHV-8 mature virions was strongly inhibited in genetically modified IFN-producing BCBL-1 cells as compared with parental or control transduced counterparts. A similar inhibition was obtained on treatment of parental BCBL-1 cells with exogenous IFN-con1. The reduction in KSHV/HHV-8 production was associated with a decrease in the basal and TPA-stimulated intracellular amount of the linear form of the viral genome. Interestingly, 25%-40% of the IFN-producing BCBL-1 cell population underwent spontaneous apoptosis in vitro. TPA treatment, which did not significantly affect the viability of the parental and control BCBL-1 cells, resulted in the apoptotic death of up to 70% of the IFN-producing cell population. Addition of exogenous IFN-con1 to parental BCBL-1 cells produced similar effects, although less intense. Injection of either parental or control-transduced BCBL-1 cells into SCID mice resulted in progressively growing tumors characterized by an unusually high level of tumor angiogenesis. In contrast, complete tumor regression was observed in all the mice injected either subcutaneously (s.c.) or intraperitoneally (i.p.) with the IFN-producing BCBL-1 cells. These results represent the first evidence that type I IFN can counteract the activation of a productive herpesvirus infection in latently infected tumor cells by the induction of apoptosis, providing an interesting link between the antiviral and antitumor activities of this cytokine. These data suggest the possible advantages of strategies of type I IFN gene transfer (with respect to the use of the exogenous cytokine) for the treatment of patients with some HHV-8-induced malignancie

    Intratumoral injection of IFN-alpha dendritic cells after dacarbazine activates anti-tumor immunity: Results from a phase I trial in advanced melanoma

    Get PDF
    Background: Advanced melanoma patients have an extremely poor long term prognosis and are in strong need of new therapies. The recently developed targeted therapies have resulted in a marked antitumor effect, but most responses are partial and some degree of toxicity remain the major concerns. Methods: We tested in a phase I clinical study in advanced melanoma a chemo-immunotherapy approach based on unloaded IFN-DCs injected intratumorally one day after administration of dacarbazine. Primary endpoint of the study was treatment safety and tolerability. Secondary endpoints were immune and clinical responses of patients. Results: Six patients were enrolled, and only three completed the treatment. The chemo-immunotherapy was well tolerated with no major side effects. Three patients showed temporary disease stabilization and two of them showed induction of T cells specific for tyrosinase, NY-ESO-1 and gp100. Of interest, one patient showing a remarkable long-term disease stabilization kept showing presence of tyrosinase specific T cells in PBMC and high infiltration of memory T cells in the tumor lesion at 21 months. Conclusion: We tested a chemo-immunotherapeutic approach based on IFN-DCs injected intratumorally one day after DTIC in advanced melanoma. The treatment was well tolerated, and clinical and immunological responses, including development of vitiligo, were observed, therefore warranting additional clinical studies aimed at evaluating efficacy of this approach

    Clinical and antitumor immune responses In Relapsed/Refractory Follicular Lymphoma patients after intranodal injections of IFNα-Dendritic Cells and Rituximab

    No full text
    This study was aimed at evaluating the feasibility, safety, immunological and clinical responses in patients with Follicular lymphoma (FL) treated with monocyte-derived dendritic cells generated in the presence of interferon-alpha and GM-CSF (IFN-DC) in combination with low doses of Rituximab (R).Firstly, we analyzed in vitro and in vivo the immunological properties of IFN-DC against FL. Thus, we performed a phase I trial in 8 refractory and relapsed FL patients based on sequential intranodal injections of low-dose of R and unloaded IFN-DC and report the safety, clinical and immunological results of the enrolled patients.Preclinical studies indicated that IFN-DC can synergize with R leading to increased cytotoxicity and T cell tumor infiltration. The clinical evaluation showed that the combined treatment was totally safe. The overall response rate was 50%, PET-negative complete response rate 37% and remission is still ongoing in 2/4 of responding patients (median follow-up 26 months, range 11-47). Notably, following the combined therapy all patients showed induction/enhancement of T cell responses by CD107 degranulation or IFN-g ELISPOT assay against patient-specific tumor IGHV sequences.These results represent the proof-of-principle on the effectiveness of unloaded IFN-DC in inducing durable clinical responses and promoting induction of tumor specific peripheral T cells, thus suggesting the occurrence of an effective endogenous antitumor vaccination. The overall findings indicate that some unique properties of IFN-DC can be successfully exploited to induce/enhance antitumor responses, thus representing a valuable antitumor strategy for novel and more effective combination therapies in cancer patients
    corecore