9,287 research outputs found

    Do extremists impose the structure of social networks?

    Full text link
    The structure and the properties of complex networks essentially depend on the way how nodes get connected to each other. We assume here that each node has a feature which attracts the others. We model the situation by assigning two numbers to each node, \omega and \alpha, where \omega indicates some property of the node and \alpha the affinity towards that property. A node A is more likely to establish a connection with a node B if B has a high value of \omega and A has a high value of \alpha. Simple computer simulations show that networks built according to this principle have a degree distribution with a power law tail, whose exponent is determined only by the nodes with the largest value of the affinity \alpha (the "extremists"). This means that the extremists lead the formation process of the network and manage to shape the final topology of the system. The latter phenomenon may have implications in the study of social networks and in epidemiology.Comment: 4 pages, 3 figure

    A simple model for the kinetics of packaging of DNA in to a capsid against an external force

    Full text link
    We propose a simple model for the kinetics of packaging of viral DNA in to a capsid against an external force trying to prevent it. The model leads to a Butler-Volmer type dependence of the rate of packaging on the pulling force F

    On the Consensus Threshold for the Opinion Dynamics of Krause-Hegselmann

    Full text link
    In the consensus model of Krause-Hegselmann, opinions are real numbers between 0 and 1 and two agents are compatible if the difference of their opinions is smaller than the confidence bound parameter \epsilon. A randomly chosen agent takes the average of the opinions of all neighbouring agents which are compatible with it. We propose a conjecture, based on numerical evidence, on the value of the consensus threshold \epsilon_c of this model. We claim that \epsilon_c can take only two possible values, depending on the behaviour of the average degree d of the graph representing the social relationships, when the population N goes to infinity: if d diverges when N goes to infinity, \epsilon_c equals the consensus threshold \epsilon_i ~ 0.2 on the complete graph; if instead d stays finite when N goes to infinity, \epsilon_c=1/2 as for the model of Deffuant et al.Comment: 15 pages, 7 figures, to appear in International Journal of Modern Physics C 16, issue 2 (2005

    The Sznajd Consensus Model with Continuous Opinions

    Full text link
    In the consensus model of Sznajd, opinions are integers and a randomly chosen pair of neighbouring agents with the same opinion forces all their neighbours to share that opinion. We propose a simple extension of the model to continuous opinions, based on the criterion of bounded confidence which is at the basis of other popular consensus models. Here the opinion s is a real number between 0 and 1, and a parameter \epsilon is introduced such that two agents are compatible if their opinions differ from each other by less than \epsilon. If two neighbouring agents are compatible, they take the mean s_m of their opinions and try to impose this value to their neighbours. We find that if all neighbours take the average opinion s_m the system reaches complete consensus for any value of the confidence bound \epsilon. We propose as well a weaker prescription for the dynamics and discuss the corresponding results.Comment: 11 pages, 4 figures. To appear in International Journal of Modern Physics

    The Effect Of Extrinsic Rewards On Intrinsic Motivation In Preschool Children

    Get PDF

    Universality of the Threshold for Complete Consensus for the Opinion Dynamics of Deffuant et al

    Full text link
    In the compromise model of Deffuant et al., opinions are real numbers between 0 and 1 and two agents are compatible if the difference of their opinions is smaller than the confidence bound parameter \epsilon. The opinions of a randomly chosen pair of compatible agents get closer to each other. We provide strong numerical evidence that the threshold value of \epsilon above which all agents share the same opinion in the final configuration is 1/2, independently of the underlying social topology.Comment: 8 pages, 4 figures, to appear in Int. J. Mod. Phys. C 15, issue

    The dynamics of loop formation in a semiflexible polymer

    Get PDF
    The dynamics of loop formation by linear polymer chains has been a topic of several theoretical/experimental studies. Formation of loops and their opening are key processes in many important biological processes. Loop formation in flexible chains has been extensively studied by many groups. However, in the more realistic case of semiflexible polymers, not much results are available. In a recent study (K. P. Santo and K. L. Sebastian, Phys. Rev. E, \textbf{73}, 031293 (2006)), we investigated opening dynamics of semiflexible loops in the short chain limit and presented results for opening rates as a function of the length of the chain. We presented an approximate model for a semiflexible polymer in the rod limit, based on a semiclassical expansion of the bending energy of the chain. The model provided an easy way to describe the dynamics. In this paper, using this model, we investigate the reverse process, i.e., the loop formation dynamics of a semiflexible polymer chain by describing the process as a diffusion-controlled reaction. We perform a detailed multidimensional analysis of the problem and calculate closing times for a semiflexible chain which leads to results that are physically expected. Such a multidimensional analysis leading to these results does not seem to exist in the literature so far.Comment: 37 pages 4 figure

    Diffusion of scientific credits and the ranking of scientists

    Full text link
    Recently, the abundance of digital data enabled the implementation of graph based ranking algorithms that provide system level analysis for ranking publications and authors. Here we take advantage of the entire Physical Review publication archive (1893-2006) to construct authors' networks where weighted edges, as measured from opportunely normalized citation counts, define a proxy for the mechanism of scientific credit transfer. On this network we define a ranking method based on a diffusion algorithm that mimics the spreading of scientific credits on the network. We compare the results obtained with our algorithm with those obtained by local measures such as the citation count and provide a statistical analysis of the assignment of major career awards in the area of Physics. A web site where the algorithm is made available to perform customized rank analysis can be found at the address http://www.physauthorsrank.orgComment: Revised version. 11 pages, 10 figures, 1 table. The portal to compute the rankings of scientists is at http://www.physauthorsrank.or

    Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities

    Full text link
    Many complex networks display a mesoscopic structure with groups of nodes sharing many links with the other nodes in their group and comparatively few with nodes of different groups. This feature is known as community structure and encodes precious information about the organization and the function of the nodes. Many algorithms have been proposed but it is not yet clear how they should be tested. Recently we have proposed a general class of undirected and unweighted benchmark graphs, with heterogenous distributions of node degree and community size. An increasing attention has been recently devoted to develop algorithms able to consider the direction and the weight of the links, which require suitable benchmark graphs for testing. In this paper we extend the basic ideas behind our previous benchmark to generate directed and weighted networks with built-in community structure. We also consider the possibility that nodes belong to more communities, a feature occurring in real systems, like, e. g., social networks. As a practical application, we show how modularity optimization performs on our new benchmark.Comment: 9 pages, 13 figures. Final version published in Physical Review E. The code to create the benchmark graphs can be freely downloaded from http://santo.fortunato.googlepages.com/inthepress
    corecore