19 research outputs found

    A perspective on the microscopic pressure (stress) tensor: history, current understanding, and future challenges

    Full text link
    The pressure tensor (equivalent to the negative stress tensor) at both microscopic and macroscopic levels is fundamental to many aspects of engineering and science, including fluid dynamics, solid mechanics, biophysics, and thermodynamics. In this perspective paper, we review methods to calculate the microscopic pressure tensor. Connections between different pressure forms for equilibrium and non-equilibrium systems are established. We also point out several challenges in the field, including the historical controversies over the definition of the microscopic pressure tensor; the difficulties with many-body and long-range potentials; the insufficiency of software and computational tools; and the lack of experimental routes to probe the pressure tensor at the nanoscale. Possible future directions are suggested.Comment: This is the final version accepted by The Journal of Chemical Physics (in press). The link to the article is https://aip.scitation.org/doi/abs/10.1063/5.013248

    Carbon Sequestration through CO2 Foam-Enhanced Oil Recovery: A Green Chemistry Perspective

    No full text
    Enhanced oil recovery (EOR) via carbon dioxide (CO2) flooding has received a considerable amount of attention as an economically feasible method for carbon sequestration, with many recent studies focusing on developing enhanced CO2 foaming additives. However, the potential long-term environmental effects of these additives in the event of leakage are poorly understood and, given the amount of additives injected in a typical CO2 EOR operation, could be far-reaching. This paper presents a summary of recent developments in surfactant and surfactant/nanoparticle-based CO2 foaming systems, with an emphasis on the possible environmental impacts of CO2 foam leakage. Most of the surfactants studied are unlikely to degrade under reservoir conditions, and their release can cause major negative impacts on wildlife. With recent advances in the use of additives (e.g., nonionic surfactants, nanoparticles, and other chemicals) the use of harsh anionic surfactants may no longer be warranted. This paper discusses recent advances in producing foaming systems, and highlights possible strategies to develop environmentally friendly CO2 EOR methods. Keywords: Surfactants, Nanoparticles, Carbon sequestration, Enhanced oil recover

    Design of Linear Ligands for Selective Separation Using a Genetic Algorithm Applied to Molecular Architecture

    No full text
    Continuous purification of chemical reaction products through adsorption-based operations during workup may present advantages over batch chromatography or crystallization. In pharmaceutical syntheses, however, the desired product is often structurally similar to byproducts or unconverted reactant, so that identifying a suitable adsorption medium is challenging. We developed an in silico screening process to design organic ligands which, when chemically bound to a solid surface, would constitute an effective adsorption for a pharmaceutically relevant mixture of reaction products. This procedure employs automated molecular dynamics simulations to evaluate potential ligands, by measuring the difference in adsorption energy of two solutes which differed by one functional group. Then, a genetic algorithm was used to iteratively improve a population of such ligands through selection and reproduction steps. This procedure identified chemical designs of the surface-bound ligands that were outside the set we considered using chemical intuition. The ligand designs achieved selectivity by exploiting phenyl–phenyl stacking which was sterically hindered in the case of one solution component. The ligand designs had selectivity energies of 0.8–1.6 kcal/mol in single-ligand, solvent-free simulations, if entropic contributions to the relative selectivity are neglected. We believe this molecular evolution technique presents a useful method for the directed exploration of chemical space or for molecular design, when the chemical properties of interest can be efficiently evaluated through simulations

    Modelling nucleation from solution with the string method in the osmotic ensemble

    No full text
    <p>Direct molecular simulation of nucleation from solution is a challenging task, requiring a combination of ‘rare events’ techniques and methods to control the chemical potential. Rare event methods usually keep the total number of molecules fixed, resulting in artificial free energy profiles due to the depletion of solute from the solution phase. In order to address this issue, we present a new approach that uses the string method in collective variables in the osmotic ensemble to obtain minimum free energy pathways for nucleation at constant supersaturation. Our method does not require using an explicit reservoir of solute molecules, or making additional assumptions about the activity coefficients in the solution. We apply the new method to the crystallisation of sulfamerazine from acetonitrile and methanol solutions, and compare the resulting potential of mean force profiles to those obtained using analytical corrections previously employed in the literature.</p
    corecore