125 research outputs found

    Modeling of primary dendrite arm spacing variations in thin-slab casting of low carbon and low alloy steels

    Get PDF
    Solidification structure of a High Strength Low Alloy (HSLA) steel, in terms of dendrite arm spacing distribution across the shell thickness, is studied in a breakout shell from a thin-slab caster at Tata Steel in IJmuiden. Columnar dendrites were found to be the predominant morphology throughout the shell with size variations across the shell thickness. Primary Dendrite Arm Spacing (PDAS) increases by increasing the distance from meniscus or slab surface. Subsequently, a model is proposed to describe the variation of the PDAS with the shell thickness (the distance from slab surface) under solidifiction conditions experienced in the primary cooling zone of thin-slab casting. The proposed relationship related the PDAS to the shell thickness and, hence, can be used as a tool for predicting solidifcation structure and optimizing the thin-slab casting of low alloy steels

    Effect of V and N on the microstructure evolution during continuous casting of steel

    Get PDF
    Low Carbon (LC) steel is not expected to be sensitive to hot tearing and/or cracking while microalloyed steels are known for their high cracking sensitivity during continuous casting. Experience of the Direct Sheet Plant caster at Tata Steel in Ijmuiden (the Netherlands), seems to contradict this statement. It is observed that a LC steel grade has a high risk of cracking alias hot tearing, while a High Strength Low Alloyed (HSLA) steel has a very low cracking occurrence. Another HSLA steel grade, with a similar composition but less N and V is however very sensitive to hot tearing. An extreme crack results in a breakout. A previous statistical analysis of the breakout occurrence reveals a one and a half times higher possibility of a breakout for the HSLA grade compared to the LC grade. HSLA with extra N, V shows a four times smaller possibility of breakout than LC. This study assigns the unexpected effect of the chemical composition on the hot tearing sensitivity to the role of some alloying elements such as V and N as structure refiners.This research was carried out under project number M41.5.08320 within the framework of the Research Program of the Materials innovation institute M2i (www.m2i.nl)

    Dataset concerning the analytical approximation of the Ae3 temperature.

    Get PDF
    In this paper we present a new polynomial function for calculating the local phase transformation temperature (Ae3 ) between the austenite+ferrite and the fully austenitic phase fields during heating and cooling of steel:[Formula: see text] The dataset includes the terms of the function and the values for the polynomial coefficients for major alloying elements in steel. A short description of the approximation method used to derive and validate the coefficients has also been included. For discussion and application of this model, please refer to the full length article entitled "The role of aluminium in chemical and phase segregation in a TRIP-assisted dual phase steel" 10.1016/j.actamat.2016.05.046 (Ennis et al., 2016) [1]

    Dendrite growth direction measurements : understanding the solute advancement in continuous casting of steel

    Get PDF
    Maintaining competitiveness in steel manufacturing requires improving process efficiency and production volume whilst enhancing product quality and performance. This is particularly challenging for producing value-added advanced steel grades such as advanced high strength steels and electrical steels. These grades due to higher weight percentage of alloying elements cause difficulties in various stages of upstream and downstream processing, and this includes continuous casting, wherein high solute levels are critical towards macro-segregation. Interface growth direction in systems with more than one component is dictated by the solute profile ahead of the moving solidification front. Understanding the profile of growth direction with casting process parameters during the progress of casting will provide an important perspective towards reducing the macro-segregation in the cast product. In the present study, two steel slab samples from conventional slab caster under the influence of electromagnetic brake (EMBR) at Tata Steel in IJmuiden (The Netherlands) have been investigated for dendrite deflection measurements. The samples showed a transition zone where a change in the deflection behavior occurs. Also, the magnitude of the deflection angle decreases away from the slab surface. Correlating these experimental data with modeled fluid flow profile will help in improving the understanding of the dynamic nature of the solute advancement so that the casting parameters can be optimized to improve product quality

    Relationship between solidification microstructure and hot cracking susceptibility for continuous casting of low-carbon and high-strength low-alloyed steels: A phase-field study

    Get PDF
    © The Minerals, Metals & Materials Society and ASM International 2013Hot cracking is one of the major defects in continuous casting of steels, frequently limiting the productivity. To understand the factors leading to this defect, microstructure formation is simulated for a low-carbon and two high-strength low-alloyed steels. 2D simulation of the initial stage of solidification is performed in a moving slice of the slab using proprietary multiphase-field software and taking into account all elements which are expected to have a relevant effect on the mechanical properties and structure formation during solidification. To account for the correct thermodynamic and kinetic properties of the multicomponent alloy grades, the simulation software is online coupled to commercial thermodynamic and mobility databases. A moving-frame boundary condition allows traveling through the entire solidification history starting from the slab surface, and tracking the morphology changes during growth of the shell. From the simulation results, significant microstructure differences between the steel grades are quantitatively evaluated and correlated with their hot cracking behavior according to the Rappaz-Drezet-Gremaud (RDG) hot cracking criterion. The possible role of the microalloying elements in hot cracking, in particular of traces of Ti, is analyzed. With the assumption that TiN precipitates trigger coalescence of the primary dendrites, quantitative evaluation of the critical strain rates leads to a full agreement with the observed hot cracking behavior. © 2013 The Minerals, Metals & Materials Society and ASM International

    LONGITUDINAL FACE CRACK PREDICTION WITH THERMO-MECHANICAL MODELS OF THIN SLABS IN FUNNEL MOULDS

    Get PDF
    This paper investigates longitudinal depressions and cracks in steel continuous-cast in funnel moulds usinga finite-element model to simulate thermo-mechanical behavior of the solidifying shell in the thin-slab castermould at the Corus Direct Sheet Plant (DSP) in IJmuiden, The Netherlands. The commercial code ABAQUS[1] is used to study the effect of the funnel shape on the stresses developed within a two-dimensional sectionthrough the shell while it moves through the mould. The model first simulates heat transfer, based on heatflux profiles found from extensive plant measurements of mould heat removal and thermocouples embedded inthe mould wall. It incorporates the drop in heat flux due to local gap formation. The temperature solution isinput to the mechanical model which incorporates grade-dependent elastic-viscoplastic constitutive behavior,ferrostatic pressure, taper, mould-wall oscillations, and contact with the profiled mould wall. The results arevalidated with plant measurements, including a breakout shell, and crack statistics. The model is applied tostudy the effects of increasing casting speed and funnel design in order to avoid longitudinal cracks

    Quality and Safety Aspects of Infant Nutrition

    Get PDF
    Quality and safety aspects of infant nutrition are of key importance for child health, but oftentimes they do not get much attention by health care professionals whose interest tends to focus on functional benefits of early nutrition. Unbalanced diets and harmful food components induce particularly high risks for untoward effects in infants because of their rapid growth, high nutrient needs, and their typical dependence on only one or few foods during the first months of life. The concepts, standards and practices that relate to infant food quality and safety were discussed at a scientific workshop organized by the Child Health Foundation and the Early Nutrition Academy jointly with the European Society for Paediatric Gastroenterology, Hepatology and Nutrition, and a summary is provided here. The participants reviewed past and current issues on quality and safety, the role of different stakeholders, and recommendations to avert future issues. It was concluded that a high level of quality and safety is currently achieved, but this is no reason for complacency. The food industry carries the primary responsibility for the safety and suitability of their products, including the quality of composition, raw materials and production processes. Introduction of new or modified products should be preceded by a thorough science based review of suitability and safety by an independent authority. Food safety events should be managed on an international basis. Global collaboration of food producers, food-safety authorities, paediatricians and scientists is needed to efficiently exchange information and to best protect public health. Copyright (C) 2012 S. Karger AG, Base
    corecore