25 research outputs found

    Non resistive analysis of rotational instabilities in FRC and the Unicamp TC-1 m=4 results

    No full text
    Ideal one dimensional MHD (non-resistive) equations are used to study the rotational instability in field reversed configuration plasmas. Instead of using resistive boundary layer analysis, the eigenmode non hermitian equations are solved on the complex omega-plane using a numerical code constructed using "Mathematica" We take into account the plasma compressibility and compare our results with the Compact Torus (TC-1) experiment of the Universidade Estadual de Campinas (UNICAMP), which is presented here. The m = 4 rotational mode observed in TC-1 is used to verify the consistency of our model.281525

    A Rapid Magnetic Particle Driven Micromixer

    No full text
    Performances of a magnetic particle driven micromixer are predicted numerically. This micromixer takes advantages of mixing enhancements induced by alternating actuation of magnetic particles suspended in the fluid. Effects of magnetic actuation force, switching frequency and channel’s lateral dimension have been investigated. Numerical results show that the magnetic particle actuation at an appropriate frequency causes effective mixing and the optimum switching frequency depends on the channel’s lateral dimension and the applied magnetic force. The maximum efficiency is obtained at a relatively high operating frequency for large magnetic actuation forces and narrow microchannels. If the magnetic particles are actuated with a much higher or lower frequency than the optimum switching frequency, they tend to add limited agitation to the fluid flow and do not enhance the mixing significantly. The optimum switching frequency obtained from the present numerical prediction is in good agreement with the theoretical analysis. The proposed mixing scheme not only provides an excellent mixing, even in simple microchannel, but also can be easily applied to lab-on-a-chip applications with a pair of external electromagnets
    corecore