2 research outputs found

    Atomically Dispersed Heteronuclear Dual-Atom Catalysts: A New Rising Star in Atomic Catalysis

    Get PDF
    Atomic catalysts (AC) are gaining extensive research interest as the most active new frontier in heterogeneous catalysis due to their unique electronic structures and maximum atom-utilization efficiencies. Among all the atom catalysts, atomically dispersed heteronuclear dual-atom catalysts (HDACs), which are featured with asymmetric active sites, have recently opened new pathways in the field of advancing atomic catalysis. In this review, the up-to-date investigations on heteronuclear dual-atom catalysts together with the last advances on their theoretical predictions and experimental constructions are summarized. Furthermore, the current experimental synthetic strategies and accessible characterization techniques for these kinds of atomic catalysts, are also discussed. Finally, the crucial challenges in both theoretical and experimental aspects, as well as the future prospects of HDACs for energy-related applications are provided. It is believed that this review will inspire the rational design and synthesis of the new generation of highly effective HDACs.</p

    Rational Modulation of Single Atom Coordination Microenvironments in a BCN Monolayer for Multifunctional Electrocatalysis

    No full text
    Single-atom (SA) catalysts (SACs) have demonstrated outstanding catalytic performances toward plenty of relevant electrochemical reactions. Nevertheless, controlling the coordination microenvironment of catalytically active SAs to further enhance their catalytic oerformences has remained elusive up to now. Herein, a systematic investigation of 20 transition metal atoms that are coordinated with 20 different microenvironments in a boroncarbon-nitride monolayer (BCN) is conducted using high-throughput density functional theory calculations. The experimentally synthesized ternary BCN monolayer contains carbon, nitrogen, and boron atoms in its 2D network, thus providing a lot of new coordination environments than those of the current CxNy nanoplatforms. By exploring the structural/electrochemical stability, catalytic activity, selectivity, and electronic properties of 400 (20 × 20) TM-BCN moieties, it is discovered that specific SA coordination environments can achieve superior stability and selectivity for different electrocatalytic reactions. Moreover, a universal descriptor to accelerate the experimental process toward the synthesis of BCN-SACs is reported. These findings not only provide useful guidance for the synthesis of efficient multifunctional BCN-SACs but also will immediately benefit researchers by levering up their understanding of the mechanistic effects of SA coordination microenvironments on electrocatalytic reactions.</p
    corecore