34 research outputs found

    Molecular characterization of MRSA collected during national surveillance between 2008 and 2019 in the Netherlands

    Get PDF
    BACKGROUND: Although the Netherlands is a country with a low endemic level, methicillin-resistant Staphylococcus aureus (MRSA) poses a significant health care problem. Therefore, high coverage national MRSA surveillance has been in place since 1989. To monitor possible changes in the type-distribution and emergence of resistance and virulence, MRSA isolates are molecularly characterized.METHODS: All 43,321 isolates from 36,520 persons, collected 2008-2019, were typed by multiple-locus variable number tandem repeats analysis (MLVA) with simultaneous PCR detection of the mecA, mecC and lukF-PV genes, indicative for PVL. Next-generation sequencing data of 4991 isolates from 4798 persons were used for whole genome multi-locus sequence typing (wgMLST) and identification of resistance and virulence genes.RESULTS: We show temporal change in the molecular characteristics of the MRSA population with the proportion of PVL-positive isolates increasing from 15% in 2008-2010 to 25% in 2017-2019. In livestock-associated MRSA obtained from humans, PVL-positivity increases to 6% in 2017-2019 with isolates predominantly from regions with few pig farms. wgMLST reveals the presence of 35 genogroups with distinct resistance, virulence gene profiles and specimen origin. Typing shows prolonged persistent MRSA carriage with a mean carriage period of 407 days. There is a clear spatial and a weak temporal relationship between isolates that clustered in wgMLST, indicative for regional spread of MRSA strains.CONCLUSIONS: Using molecular characterization, this exceptionally large study shows genomic changes in the MRSA population at the national level. It reveals waxing and waning of types and genogroups and an increasing proportion of PVL-positive MRSA.</p

    Genomic comparison of mecC-carrying methicillin-resistant Staphylococcus aureus from hedgehogs and humans in the Netherlands

    Get PDF
    Objectives: MRSA carrying the mecC gene (mecC-MRSA) have been found in humans and animals worldwide. A high carriage rate of mecC-MRSA has been described among hedgehogs in different countries. We performed genomic comparison of mecC-MRSA from hedgehogs and humans using next-generation sequencing (NGS) to investigate possible zoonotic transmission in the Netherlands. Methods: Nasal swabs from hedgehogs (n = 105) were cultured using pre-enrichment and selective plates. Isolates were sequenced using Illumina NGS platforms. These data were compared with sequence data of mecC-MRSA (n = 62) from the Dutch national MRSA surveillance in humans. Results: Fifty hedgehogs were found to be MRSA positive, of which 48 carried mecC. A total of 60 mecC-MRSA isolates derived from 50 hedgehogs were compared with the human isolates. Fifty-nine mecC-MRSA from hedgehogs and all but one isolate from humans belonged to clonal complexes CC130 and CC1943. The mecC gene was located within the SCCmec XI element. Most mecC-MRSA did not carry other resistance genes besides mecC and blaZ. Two human isolates carried erm(C). Isolates differed in the presence of various virulence genes, which were linked to distinct STs and clonal complexes. Some isolates had up to 17 virulence genes, which underlines their pathogenic potential. No genetic clusters of hedgehog and human isolates were found. Conclusions: mecC-MRSA from hedgehogs and humans mainly belonged to the same two clonal complexes, indicating a common source. No firm evidence for recent zoonotic transmission was found. Further studies are needed to investigate the role of hedgehogs in the occurrence of mecC-MRSA in humans

    Molecular characterization of MRSA collected during national surveillance between 2008 and 2019 in the Netherlands

    Get PDF
    Background.Although the Netherlands is a country with a low endemic level, methicillin-resistant Staphylococcus aureus (MRSA) poses a significant health care problem. Therefore, high coverage national MRSA surveillance has been in place since 1989. To monitor possible changes in the type-distribution and emergence of resistance and virulence, MRSA isolates are molecularly characterized.Methods.All 43,321 isolates from 36,520 persons, collected 2008–2019, were typed by multiple-locus variable number tandem repeats analysis (MLVA) with simultaneous PCR detection of the mecA, mecC and lukF-PV genes, indicative for PVL. Next-generation sequencing data of 4991 isolates from 4798 persons were used for whole genome multi-locus sequence typing (wgMLST) and identification of resistance and virulence genes.Results.We show temporal change in the molecular characteristics of the MRSA population with the proportion of PVL-positive isolates increasing from 15% in 2008–2010 to 25% in 2017–2019. In livestock-associated MRSA obtained from humans, PVL-positivity increases to 6% in 2017–2019 with isolates predominantly from regions with few pig farms. wgMLST reveals the presence of 35 genogroups with distinct resistance, virulence gene profiles and specimen origin. Typing shows prolonged persistent MRSA carriage with a mean carriage period of 407 days. There is a clear spatial and a weak temporal relationship between isolates that clustered in wgMLST, indicative for regional spread of MRSA strains.Conclusions.Using molecular characterization, this exceptionally large study shows genomic changes in the MRSA population at the national level. It reveals waxing and waning of types and genogroups and an increasing proportion of PVL-positive MRSA

    Multiple-Locus Variable Number Tandem Repeat Analysis of Staphylococcus Aureus: Comparison with Pulsed-Field Gel Electrophoresis and spa-Typing

    Get PDF
    (MRSA) is required to study the routes and rates of transmission of this pathogen. Currently available typing techniques are either resource-intensive or have limited discriminatory ability. Multiple-locus variable number tandem repeat analysis (MLVA) may provide an alternative high throughput molecular typing tool with high epidemiological resolution.-sequence typing and PFGE, at the MLVA complex level with group separation values of 95.1% and 89.2%. MLVA could not discriminate between pig-related MRSA strains isolated from humans and pigs, corroborating the high degree of relationship. MLVA was also superior in the grouping of MRSA isolates previously assigned to temporal-spatial clusters with indistinguishable SpaTypes, demonstrating its enhanced epidemiological usefulness. that yields discrete and unambiguous data that can be used to assign biological meaningful genotypes and complexes and can be used for interlaboratory comparisons in network accessible databases. Results suggest that MLVA offsets the disadvantages of other high discriminatory typing approaches and represents a promising tool for hospital, national and international molecular epidemiology

    National surveillance pilot study unveils a multicenter, clonal outbreak of VIM-2-producing Pseudomonas aeruginosa ST111 in the Netherlands between 2015 and 2017

    Get PDF
    Verona Integron-encoded Metallo-beta-lactamase (VIM) is the most frequently-encountered carbapenemase in the healthcare-related pathogen Pseudomonas aeruginosa. In the Netherlands, a low-endemic country for antibiotic-resistant bacteria, no national surveillance data on the prevalence of carbapenemase-producing P. aeruginosa (CPPA) was available. Therefore, in 2016, a national surveillance pilot study was initiated to investigate the occurrence, molecular epidemiology, genetic characterization, and resistomes of CPPA among P. aeruginosa isolates submitted by medical microbiology laboratories (MMLs) throughout the country. From 1221 isolates included in the study, 124 (10%) produced carbapenemase (CIM-positive); of these, the majority (95, 77%) were positive for the blaVIM gene using PCR. Sequencing was performed on 112 CIM-positive and 56 CIM-negative isolates (n = 168), and genetic clustering revealed that 75/168 (45%) isolates were highly similar. This genetic cluster, designated Group 1, comprised isolates that belonged to high-risk sequence type ST111/serotype O12, had similar resistomes, and all but two carried the blaVIM-2 allele on an identical class 1 integron. Additionally, Group 1 isolates originated from around the country (i.e. seven provinces) and from multiple MMLs. In conclusion, the Netherlands had experienced a nationwide, inter-institutional, clonal outbreak of VIM-2-producing P. aeruginosa for at least three years, which this pilot study was crucial in identifying. A structured, national surveillance program is strongly advised to monitor the spread of Group 1 CPPA, to identify emerging clones/carbapenemase genes, and to detect transmission in and especially between hospitals in order to control current and future outbreaks

    bla OXA-48-like genome architecture among carbapenemase-producing and in the Netherlands.

    No full text
    Carbapenem-hydrolysing enzymes belonging to the OXA-48-like group are encoded by blaOXA-48-like alleles and are abundant among Enterobacterales in the Netherlands. Therefore, the objective here was to investigate the characteristics, gene content and diversity of the blaOXA-48-like carrying plasmids and chromosomes of Escherichia coli and Klebsiella pneumoniae collected in the Dutch national surveillance from 2014 to 2019 in comparison with genome sequences from 29 countries. A combination of short-read genome sequencing with long-read sequencing enabled the reconstruction of 47 and 132 complete blaOXA-48-like plasmids for E. coli and K. pneumoniae, respectively. Seven distinct plasmid groups designated as pOXA-48-1 to pOXA-48-5, pOXA-181 and pOXA-232 were identified in the Netherlands which were similar to internationally reported plasmids obtained from countries from North and South America, Europe, Asia and Oceania. The seven plasmid groups varied in size, G+C content, presence of antibiotic resistance genes, replicon family and gene content. The pOXA-48-1 to pOXA-48-5 plasmids were variable, and the pOXA-181 and pOXA-232 plasmids were conserved. The pOXA-48-1, pOXA-48-2, pOXA-48-3 and pOXA-48-5 groups contained a putative conjugation system, but this was absent in the pOXA-48-4, pOXA-181 and pOXA-232 plasmid groups. pOXA-48 plasmids contained the PemI antitoxin, while the pOXA-181 and pOXA-232 plasmids did not. Furthermore, the pOXA-181 plasmids carried a virB2-virB3-virB9-virB10-virB11 type IV secretion system, while the pOXA-48 plasmids and pOXA-232 lacked this system. A group of non-related pOXA-48 plasmids from the Netherlands contained different resistance genes, non-IncL-type replicons or no replicons. Whole genome multilocus sequence typing revealed that the blaOXA-48-like plasmids were found in a wide variety of genetic backgrounds in contrast to chromosomally encoded blaOXA-48-like alleles. Chromosomally localized blaOXA-48 and blaOXA-244 alleles were located on genetic elements of variable sizes and comprised regions of pOXA-48 plasmids. The blaOXA-48-like genetic element was flanked by a direct repeat upstream of IS1R, and was found at multiple locations in the chromosomes of E. coli. Lastly, K. pneumoniae isolates carrying blaOXA-48 or blaOXA-232 were mostly resistant for meropenem, whereas E. coli blaOXA-48, blaOXA-181 and chromosomal blaOXA-48 or blaOXA-244 isolates were mostly sensitive. In conclusion, the overall blaOXA-48-like plasmid population in the Netherlands is conserved and similar to that reported for other countries, confirming global dissemination of blaOXA-48-like plasmids. Variations in size, presence of antibiotic resistance genes and gene content impacted pOXA-48, pOXA-181 and pOXA-232 plasmid architecture

    Plasmid diversity among genetically related Klebsiella pneumoniae bla and bla isolates collected in the Dutch national surveillance.

    Get PDF
    Carbapenemase-producing Klebsiella pneumoniae emerged as a nosocomial pathogen causing morbidity and mortality in patients. For infection prevention it is important to track the spread of K. pneumoniae and its plasmids between patients. Therefore, the major aim was to recapitulate the contents and diversity of the plasmids of genetically related K. pneumoniae strains harboring the beta-lactamase gene blaKPC-2 or blaKPC-3 to determine their dissemination in the Netherlands and the former Dutch Caribbean islands from 2014 to 2019. Next-generation sequencing was combined with long-read third-generation sequencing to reconstruct 22 plasmids. wgMLST revealed five genetic clusters comprised of K. pneumoniae blaKPC-2 isolates and four clusters consisted of blaKPC-3 isolates. KpnCluster-019 blaKPC-2 isolates were found both in the Netherlands and the Caribbean islands, while blaKPC-3 cluster isolates only in the Netherlands. Each K. pneumoniae blaKPC-2 or blaKPC-3 cluster was characterized by a distinct resistome and plasmidome. However, the large and medium plasmids contained a variety of antibiotic resistance genes, conjugation machinery, cation transport systems, transposons, toxin/antitoxins, insertion sequences and prophage-related elements. The small plasmids carried genes implicated in virulence. Thus, implementing long-read plasmid sequencing analysis for K. pneumoniae surveillance provided important insights in the transmission of a KpnCluster-019 blaKPC-2 strain between the Netherlands and the Caribbean

    Plasmid diversity among genetically related Klebsiella pneumoniae bla and bla isolates collected in the Dutch national surveillance.

    No full text
    Carbapenemase-producing Klebsiella pneumoniae emerged as a nosocomial pathogen causing morbidity and mortality in patients. For infection prevention it is important to track the spread of K. pneumoniae and its plasmids between patients. Therefore, the major aim was to recapitulate the contents and diversity of the plasmids of genetically related K. pneumoniae strains harboring the beta-lactamase gene blaKPC-2 or blaKPC-3 to determine their dissemination in the Netherlands and the former Dutch Caribbean islands from 2014 to 2019. Next-generation sequencing was combined with long-read third-generation sequencing to reconstruct 22 plasmids. wgMLST revealed five genetic clusters comprised of K. pneumoniae blaKPC-2 isolates and four clusters consisted of blaKPC-3 isolates. KpnCluster-019 blaKPC-2 isolates were found both in the Netherlands and the Caribbean islands, while blaKPC-3 cluster isolates only in the Netherlands. Each K. pneumoniae blaKPC-2 or blaKPC-3 cluster was characterized by a distinct resistome and plasmidome. However, the large and medium plasmids contained a variety of antibiotic resistance genes, conjugation machinery, cation transport systems, transposons, toxin/antitoxins, insertion sequences and prophage-related elements. The small plasmids carried genes implicated in virulence. Thus, implementing long-read plasmid sequencing analysis for K. pneumoniae surveillance provided important insights in the transmission of a KpnCluster-019 blaKPC-2 strain between the Netherlands and the Caribbean

    bla OXA-48-like genome architecture among carbapenemase-producing and in the Netherlands.

    No full text
    Carbapenem-hydrolysing enzymes belonging to the OXA-48-like group are encoded by blaOXA-48-like alleles and are abundant among Enterobacterales in the Netherlands. Therefore, the objective here was to investigate the characteristics, gene content and diversity of the blaOXA-48-like carrying plasmids and chromosomes of Escherichia coli and Klebsiella pneumoniae collected in the Dutch national surveillance from 2014 to 2019 in comparison with genome sequences from 29 countries. A combination of short-read genome sequencing with long-read sequencing enabled the reconstruction of 47 and 132 complete blaOXA-48-like plasmids for E. coli and K. pneumoniae, respectively. Seven distinct plasmid groups designated as pOXA-48-1 to pOXA-48-5, pOXA-181 and pOXA-232 were identified in the Netherlands which were similar to internationally reported plasmids obtained from countries from North and South America, Europe, Asia and Oceania. The seven plasmid groups varied in size, G+C content, presence of antibiotic resistance genes, replicon family and gene content. The pOXA-48-1 to pOXA-48-5 plasmids were variable, and the pOXA-181 and pOXA-232 plasmids were conserved. The pOXA-48-1, pOXA-48-2, pOXA-48-3 and pOXA-48-5 groups contained a putative conjugation system, but this was absent in the pOXA-48-4, pOXA-181 and pOXA-232 plasmid groups. pOXA-48 plasmids contained the PemI antitoxin, while the pOXA-181 and pOXA-232 plasmids did not. Furthermore, the pOXA-181 plasmids carried a virB2-virB3-virB9-virB10-virB11 type IV secretion system, while the pOXA-48 plasmids and pOXA-232 lacked this system. A group of non-related pOXA-48 plasmids from the Netherlands contained different resistance genes, non-IncL-type replicons or no replicons. Whole genome multilocus sequence typing revealed that the blaOXA-48-like plasmids were found in a wide variety of genetic backgrounds in contrast to chromosomally encoded blaOXA-48-like alleles. Chromosomally localized blaOXA-48 and blaOXA-244 alleles were located on genetic elements of variable sizes and comprised regions of pOXA-48 plasmids. The blaOXA-48-like genetic element was flanked by a direct repeat upstream of IS1R, and was found at multiple locations in the chromosomes of E. coli. Lastly, K. pneumoniae isolates carrying blaOXA-48 or blaOXA-232 were mostly resistant for meropenem, whereas E. coli blaOXA-48, blaOXA-181 and chromosomal blaOXA-48 or blaOXA-244 isolates were mostly sensitive. In conclusion, the overall blaOXA-48-like plasmid population in the Netherlands is conserved and similar to that reported for other countries, confirming global dissemination of blaOXA-48-like plasmids. Variations in size, presence of antibiotic resistance genes and gene content impacted pOXA-48, pOXA-181 and pOXA-232 plasmid architecture
    corecore