45 research outputs found
Evaluation of non-intrusive flow measurement techniques for a re-entry flight experiment
This study evaluates various non-intrusive techniques for the measurement of the flow field on the windward side of the Space Shuttle orbiter or a similar reentry vehicle. Included are linear (Rayleigh, Raman, Mie, Laser Doppler Velocimetry, Resonant Doppler Velocimetry) and nonlinear (Coherent Anti-Stokes Raman, Laser-Induced Fluorescence) light scattering, electron-beam fluorescence, thermal emission, and mass spectroscopy. Flow-field properties were taken from a nonequilibrium flow model by Shinn, Moss, and Simmonds at the NASA Langley Research Center. Conclusions are, when possible, based on quantitative scaling of known laboratory results to the conditions projected. Detailed discussion with researchers in the field contributed further to these conclusions and provided valuable insights regarding the experimental feasibility of each of the techniques
The role of surface generated radicals in catalytic combustion
Experiments were conducted to better understand the role of catalytic surface reactions in determining the ignition characteristics of practical catalytic combustors. Hydrocarbon concentrations, carbon monoxide and carbon dioxide concentrations, hydroxyl radical concentrations, and gas temperature were measured at the exit of a platinum coated, stacked plate, catalytic combustor during the ignition of lean propane-air mixtures. The substrate temperature profile was also measured during the ignition transient. Ignition was initiated by suddenly turning on the fuel and the time to reach steady state was of the order of 10 minutes. The gas phase reaction, showed no pronounced effect due to the catalytic surface reactions, except the absence of a hydroxyl radical overshoot. It is found that the transient ignition measurements are valuable in understanding the steady state performance characteristics
Laser induced spark ignition of methane-oxygen mixtures
Results from an experimental study of laser induced spark ignition of methane-oxygen mixtures are presented. The experiments were conducted at atmospheric pressure and 296 K under laminar pre-mixed and turbulent-incompletely mixed conditions. A pulsed, frequency doubled Nd:YAG laser was used as the ignition source. Laser sparks with energies of 10 mJ and 40 mJ were used, as well as a conventional electrode spark with an effective energy of 6 mJ. Measurements were made of the flame kernel radius as a function of time using pulsed laser shadowgraphy. The initial size of the spark ignited flame kernel was found to correlate reasonably well with breakdown energy as predicted by the Taylor spherical blast wave model. The subsequent growth rate of the flame kernel was found to increase with time from a value less than to a value greater than the adiabatic, unstretched laminar growth rate. This behavior was attributed to the combined effects of flame stretch and an apparent wrinkling of the flame surface due to the extremely rapid acceleration of the flame. The very large laminar flame speed of methane-oxygen mixtures appears to be the dominant factor affecting the growth rate of spark ignited flame kernels, with the mode of ignition having a small effect. The effect of incomplete fuel-oxidizer mixing was found to have a significant effect on the growth rate, one which was greater than could simply be accounted for by the effect of local variations in the equivalence ratio on the local flame speed
Coupling of Transport and Chemical Processes in Catalytic Combustion
Catalytic combustors have demonstrated the ability to operate efficiently over a much wider range of fuel air ratios than are imposed by the flammability limits of conventional combustors. Extensive commercial use however needs the following: (1) the design of a catalyst with low ignition temperature and high temperature stability, (2) reducing fatigue due to thermal stresses during transient operation, and (3) the development of mathematical models that can be used as design optimization tools to isolate promising operating ranges for the numerous operating parameters. The current program of research involves the development of a two dimensional transient catalytic combustion model and the development of a new catalyst with low temperature light-off and high temperature stablity characteristics
The effect of incomplete fuel-air mixing on the lean blowout limit, lean stability limit and NO(x) emissions in lean premixed gas turbine combustors
Gas turbine engines for both land-based and aircraft propulsion applications are facing regulations on NOx emissions which cannot be met with current combustor technology. A number of alternative combustor strategies are being investigated which have the potential capability of achieving ultra-low NOx emissions, including lean premixed combustors, direct injection combustors, rich burn-quick quench-lean burn combustors and catalytic combustors. The research reported in this paper addresses the effect of incomplete fuel-air mixing on the lean limit performance and the NOx emissions characteristics of lean premixed combustors
Droplet turbulence interactions under subcritical and supercritical conditions
The goal of this research is to experimentally characterize the behavior of droplets in vaporizing liquid sprays under conditions typical of those encountered in high pressure combustion systems such as liquid fueled rocket engines. Of particular interest are measurements of droplet drag, droplet heating, droplet vaporization, droplet distortion, and secondary droplet breakup, under both subcritical and supercritical conditions. The paper presents a brief description of the specific accomplishments which have been made over the past year
Terahertz detection mechanism and contact capacitance of individual metallic single-walled carbon nanotubes
We characterize the terahertz detection mechanism in antenna-coupled metallic
single-walled carbon nanotubes. At low temperature, 4.2 K, a peak in the
low-frequency differential resistance is observed at zero bias current due to
non-Ohmic contacts. This electrical contact nonlinearity gives rise to the
measured terahertz response. By modeling each nanotube contact as a nonlinear
resistor in parallel with a capacitor, we determine an upper bound for the
value of the contact capacitance that is smaller than previous experimental
estimates. The small magnitude of this contact capacitance has favorable
implications for the use of carbon nanotubes in high-frequency device
applications.Comment: 13 pages, 3 figures, 1 tabl
THE EFFECTS OF FUEL COMPOSITION ON FLAME STRUCTURE AND COMBUSTION DYNAMICS IN A LEAN PREMIXED COMBUSTOR
ABSTRACT The stability characteristics of a laboratory-scale lean premixed combustor operating on natural gas -hydrogen fuel mixtures have been studied in a variable length combustor facility. The fuel and air were mixed upstream of the choked inlet to the combustor to eliminate equivalence ratio fluctuations and thereby ensure that the dominant instability driving mechanism was flame-vortex interaction. The inlet velocity, inlet temperature, equivalence ratio and percent hydrogen in the fuel were systematically varied, and at each operating condition the combustor pressure fluctuations were measured as a function of the combustor length. The results are presented in the form of two-dimensional stability maps, which are plots of the normalized rms pressure fluctuation versus the equivalence ratio and the combustor length, for a given inlet temperature, inlet velocity, and fuel mixture. In order to understand the effects of operating conditions and fuel composition on the observed stability characteristics, twodimensional chemiluminescence images of the flame structure were recorded at all operating conditions and for all fuel mixtures under stable conditions. Changes in the stable flame structure, as characterized by the location of the flame's "center of heat release", were found to be consistent with the observed instability characteristics. The location of the flame's "center of heat release" was found to lie along a single path for all operating conditions and fuel mixtures. It was also observed that there were regions of stable and unstable combustion as one moved along this path. Furthermore it was found that flames having the same "center of heat release" location, but different operating conditions and fuel composition, have very nearly the same flame shape. These results will be useful for developing phenomenological models for predicting unstable combustion
Very long optical path-length from a compact multi-pass cell
The multiple-pass optical cell is an important tool for laser absorption
spectroscopy and its many applications. For most practical applications, such
as trace-gas detection, a compact and robust design is essential. Here we
report an investigation into a multi-pass cell design based on a pair of
cylindrical mirrors, with a particular focus on achieving very long optical
paths. We demonstrate a path-length of 50.31 m in a cell with 40 mm diameter
mirrors spaced 88.9 mm apart - a 3-fold increase over the previously reported
longest path-length obtained with this type of cell configuration. We
characterize the mechanical stability of the cell and describe the practical
conditions necessary to achieve very long path-lengths
Phase preserving amplification near the quantum limit with a Josephson Ring Modulator
Recent progress in solid state quantum information processing has stimulated
the search for ultra-low-noise amplifiers and frequency converters in the
microwave frequency range, which could attain the ultimate limit imposed by
quantum mechanics. In this article, we report the first realization of an
intrinsically phase-preserving, non-degenerate superconducting parametric
amplifier, a so far missing component. It is based on the Josephson ring
modulator, which consists of four junctions in a Wheatstone bridge
configuration. The device symmetry greatly enhances the purity of the
amplification process and simplifies both its operation and analysis. The
measured characteristics of the amplifier in terms of gain and bandwidth are in
good agreement with analytical predictions. Using a newly developed noise
source, we also show that our device operates within a factor of three of the
quantum limit. This development opens new applications in the area of quantum
analog signal processing