6 research outputs found

    Probing Gelation and Rheological Behavior of a Self-Assembled Molecular Gel

    No full text
    Molecular gels have been investigated over the last few decades; however, mechanical behavior of these self-assembled gels is not well understood, particularly how these materials fail at large strain. Here, we report the gelation and rheological behavior of a molecular gel formed by self-assembly of a low molecular weight gelator (LMWG), di-Fmoc-l-lysine, in 1-propanol/water mixture. Gels were prepared by solvent-triggered technique, and gelation was tracked using Fourier transform infrared (FTIR) spectroscopy and shear rheology. FTIR spectroscopy captures the formation of hydrogen bonding between the gelator molecules, and the change in IR spectra during the gelation process correlates with the gelation kinetics results captured by rheology. Self-assembly of gelator molecules leads to a fiber-like structure, and these long fibers topologically interact to form a gel-like material. Stretched-exponential function can capture the stress-relaxation data. Stress-relaxation time for these gels have been found to be long owing to long fiber dimensions, and the stretching exponent value of 1/3 indicates polydispersity in fiber dimensions. Cavitation rheology captures fracture-like behavior of these gels, and critical energy release rate has been estimated to be of the order 0.1 J/m<sup>2</sup>. Our results provide new understanding of the rheological behavior of molecular gels and their structural origin

    Increasing Molecular Mass in Enzymatic Lactone Polymerizations

    No full text
    Using a model developed for the enzyme-catalyzed polymerization and degradation of poly­(caprolactone), we illustrate a method and the kinetic mechanisms necessary to improve molecular mass by manipulating equilibrium reactions in the kinetic pathway. For these polymerization/degradation reactions, a water/linear chain equilibrium controls the number of chains in solution. Here, we control the equilibrium by adding water-trapping molecular sieves in the batch polymerization reactions of ε-caprolactone. While ring-opening rates were mostly unaffected, the molecular mass shifted to higher molecular masses after complete conversion was reached, and a good agreement between the experimental and modeling results was found. These results provide a framework to improve the molecular mass for enzyme-catalyzed ring-opening polymerization of lactone

    Molecular Insights into Gelation of Di-Fmoc‑l‑Lysine in Organic Solvent–Water Mixtures

    No full text
    Despite significant interest in molecular gels due to their intriguing structure formation through self-assembly and their stimuli-responsive behavior, our understanding of the gel formation mechanism of a low-molecular-weight gelator (LMWG) is incomplete. Here, we report a combined experimental and computational study on a LMWG, di-Fmoc-l-lysine, that has two aromatic moieties and multiple hydrogen bond donors and acceptors. Gelation in various organic solvent–water mixtures was obtained through the solvent-triggered technique. We show that an approach based on approximate cohesive energy density derived from density functional theory (DFT) calculations can capture the experimental solubility trend of LMWGs in different organic solvents. Furthermore, DFT calculations indicate parallel and helical structures to be the preferred structural motifs for gelator dimers. We believe that these motifs can potentially lead to fiber formation as observed with microscopy. Our work provides a relatively simple yet effective approach to quantify interactions between solvents and complex gelators that can help rationalize solubility and gelation behavior

    Microstructure and Mechanical Properties of In Situ <i>Streptococcus mutans</i> Biofilms

    No full text
    Insight into live microbial biofilm microstructure and mechanical properties and their interactions with the underlying substrate can lead to the development of new remedial strategies and/or materials. Here we report mechanical properties of dental pathogenic <i>Streptococcus mutans</i> biofilms, grown on a polystyrene-coated plate of a shear rheometer in physiologically relevant conditions, precisely controlled in a custom built bioreactor. In situ measurements demonstrated the importance of microstructure and composition of extracellular polymeric substances on the biofilm modulus. The biofilms behave like a weak gel with storage moduli higher than loss moduli. The simple but robust experimental technique presented here can easily be extended to other biofilm-material systems

    Anisotropic Nanoparticles Contributing to Shear-Thickening Behavior of Fumed Silica Suspensions

    No full text
    Rheological characteristics of a concentrated suspension can be tuned using anisotropic particles having various shapes and sizes. Here, the role of anisotropic nanoparticles, such as surface-functionalized multiwall carbon nanotubes (MWNTs) and graphene oxide nanoplatelets (GONPs), on the rheological behavior of fumed silica suspensions in poly­(ethylene glycol) (PEG) is investigated. In these mixed-particle suspensions, the concentrations of MWNTs and GONPs are much lower than the fumed silica concentration. The suspensions are stable, and hydrogen-bonded PEG solvation layers around the particles inhibit their flocculation. Fumed silica suspensions over the concentration range considered here display shear-thickening behavior. However, for a larger concentration of MWNTs and with increasing aspect ratios, the shear-thickening behavior diminishes. In contrast, a distinct shear-thickening response has been observed for the GONP-containing suspensions for similar mass fractions (MFs) of MWNTs. For these suspensions, shear thickening is achieved at a lower solid MFs compared to the suspensions consisting of only fumed silica. A significant weight reduction of shear-thickening fluids that can be achieved by this approach is beneficial for many applications. Our results provide guiding principles for controlling the rheological behavior of mixed-particle systems relevant in many fields

    Effects of Poly(3-hexylthiophene) Molecular Weight and the Aging of Spinning Solution on the Electrospun Fiber Properties

    No full text
    The electrospinning technique is an attractive route for processing conjugated polymers in a significant quantity for large-scale applications. However, the processing–structure–property relationship of the electrospinning process for conjugated polymers is not well understood. Here, we report the electrospinning of poly(3-hexylthiophene) (P3HT) for three different molecular weights of P3HT: 31, 58, and 83 kDa. Chloroform was used as a solvent, and a high molecular weight poly(ethylene oxide) (PEO) was utilized to facilitate the processing of P3HT. Electrospinning was performed on the freshly prepared and 24 h aged spinning solutions. The aging of the spinning solution led to the self-assembly of P3HT chains, particularly with dominant H-aggregation for 83 kDa P3HT. The structure development and properties of the fibers were investigated, including the single-fiber electrical conductivity measured using a custom-built setup. Electrical conductivity has been found to increase with increasing molecular weight, and as high as a fivefold enhancement in single-fiber electrical conductivity was obtained for the fibers from the aged solution compared to the fiber from the freshly prepared solution. Despite a 25% PEO concentration in the fibers, the maximum electrical conductivity of a single fiber was found to be ≈2.7 × 10–5 S/cm, similar to the pristine P3HT thin films. Our study provides an additional understanding of P3HT structure development in electrospun fibers as a function of polymer molecular weight and processing steps and relates that to fiber properties
    corecore