45 research outputs found

    Generating indistinguishable photons from a quantum dot in a noisy environment

    Get PDF
    Single photons from semiconductor quantum dots are promising resources for linear optical quantum computing, or, when coupled to spin states, quantum repeaters. To realize such schemes, the photons must exhibit a high degree of indistinguishability. However, the solid-state environment presents inherent obstacles for this requirement as intrinsic semiconductor fluctuations can destroy the photon indistinguishability. Here, we demonstrate that resonant excitation of a quantum dot with a narrow-band laser generates near transform limited power spectra and indistinguishable photons from a single quantum dot in an environment with many charge-fluctuating traps. The specificity of the resonant excitation suppresses the excited state population in the quantum dot when it is detuned due to spectral fluctuations. The dynamics of this process lead to flickering of the emission over long time scales (>5 μs) and reduces the time-averaged count rates. Nevertheless, in spite of significant spectral fluctuations, high visibility two-photon interference can be achieved. This approach is useful for quantum dots with nearby surface states in processed photonic structures and quantum emitters in emerging platforms, such as two-dimensional semiconductors

    Resonance fluorescence from a telecom-wavelength quantum dot

    Get PDF
    © 2016 Author(s).We report on resonance fluorescence from a single quantum dot emitting at telecom wavelengths. We perform high-resolution spectroscopy and observe the Mollow triplet in the Rabi regime - a hallmark of resonance fluorescence. The measured resonance-fluorescence spectra allow us to rule out pure dephasing as a significant decoherence mechanism in these quantum dots. Combined with numerical simulations, the experimental results provide robust characterisation of charge noise in the environment of the quantum dot. Resonant control of the quantum dot opens up new possibilities for the on-demand generation of indistinguishable single photons at telecom wavelengths as well as quantum optics experiments and direct manipulation of solid-state qubits in telecom-wavelength quantum dots
    corecore