6 research outputs found

    In Vitro Antioxidant Activity and In Vivo Topical Efficacy of Lipid Nanoparticles Co-Loading Idebenone and Tocopheryl Acetate

    Get PDF
    Idebenone (IDE) is a strong antioxidant that has been proposed for the treatment of skin disorders, including skin ageing. Unfavorable physico-chemical properties make IDE a poor skin permeant where effectiveness could be improved by its loading into suitable delivery systems such as solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). In this work, we designed novel IDE-loaded NLC containing tocopheryl acetate (VitE) as a liquid component to obtain a synergic effect between IDE and VitE. The resulting NLC showed small particle sizes (24-42 nm), low polydispersity indices (<0.300), good stability, and were assessed for their in vitro antioxidant activity and in vivo topical effects. IDE-loaded SLN and NLC showed a high antioxidant activity in in vitro assays (DPPH and reducing power method) and provided a similar and significant protection from oxidative stress of fibroblast cells, HS-68, exposed to UV light. After a two-week topical treatment of human volunteers with gels containing IDE-loaded SLN or NLC, a similar increase in skin hydration was observed, while IDE NLC reduced skin pigmentation to a greater extent than IDE SLN. These results suggest that co-loading IDE and VitE into NLC could be a promising strategy to obtain topical formulations with improved photo-protection

    Use of Vegetable Oils to Improve the Sun Protection Factor of Sunscreen Formulations

    No full text
    Some vegetable oils have many biological properties, including UV-absorbing capacity. Therefore, their use has been suggested to reduce the content of organic UV-filters in sunscreen products. In this work, we investigated the feasibility of developing oil-based vehicles with a high sun protection factor (SPF) using pomegranate oil (PMG) and shea oil (BPO) in association with different percentages of organic UV-filters (octyl– methoxycinnamate, butyl methoxydibenzoylmethane, and bemotrizinol). We characterized the spreadability, occlusion factor, pH, and required hydrophilic lipophilic balance of the resulting formulations, and did not observe relevant differences due to the incorporation of vegetable oils. The in vitro spectrophotometric determinations of SPF values highlighted that the addition of BPO (1% (w/w)) and PMG (1% (w/w)) resulted in an increase in SPF in comparison with the same formulations that contained only organic UV-filters. The SPF increase was more significant for the formulations that contained lower amounts of organic UV-filters. The results of this study supported the hypothesis that including suitable vegetable oils in sunscreen formulations could be a promising strategy to design products with a lower content of organic UV-filters

    Solid Lipid Nanoparticles Loading Idebenone Ester with Pyroglutamic Acid: In Vitro Antioxidant Activity and In Vivo Topical Efficacy

    No full text
    Idebenone (IDE), a strong antioxidant widely investigated for the treatment of neurodegenerative diseases and skin disorders, shows low oral and topical bioavailability due to its unfavorable physico-chemical properties. In this work, to improve IDE topical effectiveness, we explored a two-steps approach: (1) we synthesized an IDE ester (IDEPCA) with pyroglutamic acid, a molecule whose hydrating effects are well known; (2) we loaded IDEPCA into solid lipid nanocarriers (SLN). We evaluated in vitro antioxidant and anti-glycation activity and in vivo hydrating effects after topical application in human volunteers from gel vehicles of IDEPCA SLN in comparison to IDE SLN. All SLN showed good technological properties (mean particle size < 25 nm, polydispersity index < 0.300, good stability). The oxygen radical absorbance capacity assay showed that IDEPCA SLN and IDE SLN had similar antioxidant activity while IDEPCA SLN were more effective in the in vitro NO scavenging assay. Both IDEPCA and IDE SLN showed the same effectiveness in inhibiting the formation of advanced glycation end products. In vivo experiments pointed out a better hydrating effect of IDEPCA SLN in comparison to IDE SLN. These results suggest that the investigated approach could be a promising strategy to obtain topical formulations with increased hydrating effects

    Solid Lipid Nanoparticles as Carriers for the Synthetic Opioid LP2: Characterization and In Vitro Release

    No full text
    A synthetic dual-target mu opioid peptide receptor/delta opioid peptide receptor anti-nociceptive ligand, named LP2, has emerged as a promising candidate for the management of acute and/or persistent pain, but its lipophilicity limits further developments as a therapeutic agent. In this work, to allow designing aqueous formulations of LP2 for parenteral administration, solid lipid nanoparticles (SLNs) were investigated as LP2 nanocarriers. LP2-loaded SLNs were prepared by the phase-inversion temperature method, showing good technological properties (small mean particle, size, low polydispersity index, good stability). As LP2 was a diastereoisomeric mixture of 2R/2S-LP2, an HPLC method was developed to identify and quantify each diastereoisomer, and this method was used to assess LP2 in vitro release from SLNs. The developed method, based on reverse-phase chromatography using an isocratic mobile phase consisting of 50% methanol and 50% triethanolamine at 0.3% (pH = 3 with trifluoroacetic acid), allowed efficient separation of 2R- and 2S-LP2 peaks and reliable quantification with intra- and inter-day precision and accuracy within the acceptability limit, expressed as relative standard deviation set at ≤15%. The results of this study suggest that the incorporation of LP2 into SLNs could be a promising strategy to design suitable formulations for further pharmacological studies involving LP2

    In Vitro Antioxidant Activity and In Vivo Topical Efficacy of Lipid Nanoparticles Co-Loading Idebenone and Tocopheryl Acetate

    No full text
    Idebenone (IDE) is a strong antioxidant that has been proposed for the treatment of skin disorders, including skin ageing. Unfavorable physico-chemical properties make IDE a poor skin permeant where effectiveness could be improved by its loading into suitable delivery systems such as solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). In this work, we designed novel IDE-loaded NLC containing tocopheryl acetate (VitE) as a liquid component to obtain a synergic effect between IDE and VitE. The resulting NLC showed small particle sizes (24⁻42 nm), low polydispersity indices (<0.300), good stability, and were assessed for their in vitro antioxidant activity and in vivo topical effects. IDE-loaded SLN and NLC showed a high antioxidant activity in in vitro assays (DPPH and reducing power method) and provided a similar and significant protection from oxidative stress of fibroblast cells, HS-68, exposed to UV light. After a two-week topical treatment of human volunteers with gels containing IDE-loaded SLN or NLC, a similar increase in skin hydration was observed, while IDE NLC reduced skin pigmentation to a greater extent than IDE SLN. These results suggest that co-loading IDE and VitE into NLC could be a promising strategy to obtain topical formulations with improved photo-protection

    Efficacy of 1 L polyethylene glycol plus ascorbate versus 4 L polyethylene glycol in split-dose for colonoscopy cleansing in out and inpatient: A multicentre, randomized trial (OVER 2019)

    No full text
    Background and aims: Adequate bowel cleansing is essential for colonoscopy quality. A novel 1 L polyethylene glycol plus ascorbate (1 L PEG+ASC) solution has been recently introduced. Nevertheless, the efficacy of 1 L PEG+ASC as compared to that of high-volume bowel preparation in both inpatients and outpatients is still unclear. Patients and methods: This single-blinded, non-inferiority study randomized patients undergoing colonoscopy to receive split-dose 1 L PEG+ASC or 4 L PEG. The primary endpoint was the overall cleansing success. Secondary endpoints were excellent cleansing and high-quality cleansing of the right colon, as well as lesions detection rate, patient compliance, tolerability and safety. Results: Overall, 478 patients were randomized to 1 L PEG+ASC (N = 236) or 4 L PEG (N = 242). The 1 L PEG+ASC showed higher cleansing success rate (91.8% vs 83.6%; P=0.01) and a high-quality cleansing of the right colon (52.3% and 38.5%; P=0.004) compared to 4 L PEG. Moreover, 1 L PEG+ASC achieved a higher cleansing success in out-patients (96.3%% vs 88.6%; P=0.018), and a similar success rate in the in-patients (84.7% vs 76.7%; P=0.18). Adenoma detection rate, tolerability and incidence of adverse events were comparable between preparations. Conclusions: The 1 L PEG+ASC showed higher efficacy in achieving adequate colon cleansing compared with 4 L PEG, particularly in the right colon. No differences in the tolerability and safety were detected
    corecore