13 research outputs found

    Pangenome inventory of Burkholderia sensu lato, Burkholderia sensu stricto, and the Burkholderia cepacia complex reveals the uniqueness of Burkholderia catarinensis

    Get PDF
    Here the pangenome analysis of Burkholderia sensu lato (s.l.) was performed for the first time, together with an updated analysis of the pangenome of Burkholderia sensu stricto, and Burkholderia cepacia complex (Bcc) focusing on the Bcc B. catarinensis specific features of its re-sequenced genome. The pangenome of Burkholderia s.l., Burkholderia s.s., and of the Bcc was open, composed of more than 96% of accessory genes, and more than 62% of unknown genes. Functional annotations showed that secondary metabolism genes belonged to the variable portion of genomes, which might explain their production of several compounds with varied bioactivities. Taken together, this work showed the great variability and uniqueness of these genomes and revealed an underexplored unknown potential in poorly characterized genes. Regarding B. catarinensis 89T, its genome harbors genes related to hydrolases production and plant growth promotion. This draft genome will be valuable for further investigation of its biotechnological potentials

    The genomes of three Bradyrhizobium sp. isolated from root nodules of Lupinus albescens grown in extremely poor soils display important genes for resistance to environmental stress

    Get PDF
    Lupinus albescens is a resistant cover plant that establishes symbiotic relationships with bacteria belonging to the Bradyrhizobium genus. This symbiosis helps the development of these plants in adverse environmental conditions, such as the ones found in arenized areas of Southern Brazil. This work studied three Bradyrhizobium sp. (AS23, NAS80 and NAS96) isolated from L. albescens plants that grow in extremely poor soils (arenized areas and adjacent grasslands). The genomes of these three strains were sequenced in the Ion Torrent platform using the IonXpress library preparation kit, and presented a total number of bases of 1,230,460,823 for AS23, 1,320,104,022 for NAS80, and 1,236,105,093 for NAS96. The genome comparison with closest strains Bradyrhizobium japonicum USDA6 and Bradyrhizobium diazoefficiens USDA110 showed important variable regions (with less than 80% of similarity). Genes encoding for factors for resistance/tolerance to heavy metal, flagellar motility, response to osmotic and oxidative stresses, heat shock proteins (present only in the three sequenced genomes) could be responsible for the ability of these microorganisms to survive in inhospitable environments. Knowledge about these genomes will provide a foundation for future development of an inoculant bioproduct that should optimize the recovery of degraded soils using cover crops
    corecore