4 research outputs found

    Loss of Wolbachia infection during colonisation in the invasive Argentine ant Linepithema humile

    Get PDF
    WOLBACHIA are maternally inherited bacteria, which are very common in arthropods and nematodes. Wolbachia infection may affect host reproduction through feminisation, parthenogenesis, male-killing, cytoplasmic incompatibility and increased fecundity. Previous studies showing discrepancies between the phylogenies of Wolbachia and its arthropod hosts indicate that infection is frequently lost, but the causes of symbiont extinction have so far remained elusive. Here, we report data showing that colonisation of new habitats is a possible mechanism leading to the loss of infection. The presence and prevalence of Wolbachia were studied in three native and eight introduced populations of the Argentine ant Linepithema humile. The screening shows that the symbiont is common in the three native L. humile populations analysed. In contrast, Wolbachia was detected in only one of the introduced populations. The loss of infection associated with colonisation of new habitats may result from drift (founder effect) or altered selection pressures in the new habitat. Furthermore, a molecular phylogeny based on sequences of the Wolbachia wsp gene indicates that L. humile has been infected by a single strain. Horizontal transmission of the symbiont may be important in ants as suggested by the sequence similarity of strains in the three genera Linepithema, Acromyrmex, and Solenopsis native from South and Central America

    Fungi evolution revisited: Application of the penalized likelihood method to a bayesian fungal phylogeny provides a new perspective on phylogenetic relationships and divergence dates of ascomycota groups

    No full text
    The depiction of evolutionary relationships within phylum Ascomycota is still controversial because of unresolved branching orders in the radiation of major taxa. Here we generated a dataset of 166 small subunit (18S) rDNA sequences, representative of all groups of Fungi and used as input in a Bayesian phylogenetic analysis. This phylogeny suggests that Discomycetes are a basal group of filamentous Ascomycetes and probably maintain ancestor characters since their representatives are intermingled among other filamentous fungi. Also, we show that the evolutionary rate heterogeneity within Ascomycota precludes the assumption of a global molecular clock. Accordingly, we used the penalized likelihood method, and for calibration we included a 400 million-year-old Pyrenomycete fossil considering two distinct scenarios found in the literature, one with an estimated date of 1576 Myr for the plant-animal-fungus split and the other with an estimated date of 965 Myr for the animal-fungus split. Our data show that the current classification of the fossil as a Pyrenomycete is not compatible with the second scenario. Estimates under the first scenario are older than dates proposed in previous studies based on small subunit rDNA sequences but support estimates based on multiprotein analysis, suggesting that the radiation of the major Ascomycota groups occurred into the Proterozoic era.Universidade Federal de São Paulo, Dept Microbiol Immunol & Parasitol, BR-04023062 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Microbiol Immunol & Parasitol, BR-04023062 São Paulo, BrazilWeb of Scienc
    corecore