141 research outputs found

    A search for HI in five elliptical galaxies with fine structure

    Get PDF
    We report on VLA H I spectral line observations of five early-type galaxies classified as optically peculiar because of the presence of jets, ripples, or other optical fine structure. We detect H I within the primary beam (30' half-power beamwidth) in four of the five systems. However, in only one case is this gas associated with the targeted elliptical galaxy. In the other cases the H I is associated with a nearby gas-rich disk or dwarf galaxy. The one H I detection is for NGC 7626, where we tentatively detect an H I cloud lying between 20 and 40 kpc southwest of the galaxy center. Its origin is unclear. Our failure to detect obvious tidal H I features suggests that if these fine-structure elliptical galaxies are remnants of disk galaxy mergers, either the progenitors were gas-poor or they are well evolved and any gaseous tidal features have dispersed and/or been converted into other phases. Our targeted systems all reside in groups or clusters, and it seems likely that tidal H I is shorter lived in these environments than suggested by studies of more isolated merger remnants

    Comparison of the intracellular trafficking itinerary of ctla-4 orthologues.

    Get PDF
    CTLA-4 is an essential inhibitor of T cell immune responses. At steady state, most CTLA-4 resides in intracellular compartments due to constitutive internalisation mediated via a tyrosine based endocytic motif (YVKM) within the cytoplasmic domain. This domain is highly conserved in mammals suggesting strong selective pressure. In contrast, the C-terminal domain varies considerably in non-mammals such as fish, xenopus and birds. We compared the ability of the C-terminus of these species to direct the trafficking of CTLA-4 with human CTLA-4. Using a chimeric approach, endocytosis was found to be conserved between human, xenopus and chicken CTLA-4 but was reduced substantially in trout CTLA-4, which lacks the conserved YXXM motif. Nevertheless, we identified an alternative YXXF motif in trout CTLA-4 that permitted limited endocytosis. Post-internalisation, CTLA-4 was either recycled or targeted for degradation. Human and chicken CTLA-4, which contain a YVKM motif, showed efficient recycling compared to xenopus CTLA-4 which contains a less efficient YEKM motif. Specific mutation of this motif in human CTLA-4 reduced receptor recycling. These findings suggest evolutionary development in the endocytic and recycling potential of CTLA-4, which may facilitate more refined functions of CTLA-4 within the mammalian immune system

    Interferon Regulatory Factor 5 Controls Necrotic Core Formation in Atherosclerotic Lesions by Impairing Efferocytosis

    Get PDF
    The research leading to these results has received funding from the British Heart Foundation Center of Research Excellence, Imperial College London, the European Commission under the Seventh Framework Program (FP7/2007–2013; contract no. 201668; AtheroRemo and HEALTH.2012-1.2-1; contract no. 305739 RiskyCAD), The Kennedy Trustees, The Swedish Heart and Lung foundation (20150277), The Swedish Research Council (2015-00582), the Swedish Society of Medicine (SLS-500141), Skåne University Hospital funds, Region Skåne Research funds, and the Novo Nordisk Foundation (grant no. NNF15CC0018346)

    Occupancy Classification of Position Weight Matrix-Inferred Transcription Factor Binding Sites

    Get PDF
    BACKGROUND: Computational prediction of Transcription Factor Binding Sites (TFBS) from sequence data alone is difficult and error-prone. Machine learning techniques utilizing additional environmental information about a predicted binding site (such as distances from the site to particular chromatin features) to determine its occupancy/functionality class show promise as methods to achieve more accurate prediction of true TFBS in silico. We evaluate the Bayesian Network (BN) and Support Vector Machine (SVM) machine learning techniques on four distinct TFBS data sets and analyze their performance. We describe the features that are most useful for classification and contrast and compare these feature sets between the factors. RESULTS: Our results demonstrate good performance of classifiers both on TFBS for transcription factors used for initial training and for TFBS for other factors in cross-classification experiments. We find that distances to chromatin modifications (specifically, histone modification islands) as well as distances between such modifications to be effective predictors of TFBS occupancy, though the impact of individual predictors is largely TF specific. In our experiments, Bayesian network classifiers outperform SVM classifiers. CONCLUSIONS: Our results demonstrate good performance of machine learning techniques on the problem of occupancy classification, and demonstrate that effective classification can be achieved using distances to chromatin features. We additionally demonstrate that cross-classification of TFBS is possible, suggesting the possibility of constructing a generalizable occupancy classifier capable of handling TFBS for many different transcription factors

    Regulation of Pax6 by CTCF during Induction of Mouse ES Cell Differentiation

    Get PDF
    Pax6 plays an important role in embryonic cell (ES) differentiation during embryonic development. Expression of Pax6 undergoes from a low level to high levels following ES cell differentiation to neural stem cells, and then fades away in most of the differentiated cell types. There is a limited knowledge concerning how Pax6 is regulated in ES cell differentiation. We report that Pax6 expression in mouse ES cells was controlled by CCCTC binding factor (CTCF) through a promoter repression mechanism. Pax6 expression was significantly enhanced while CTCF activity was kept in the constant during ES cell differentiation to radial glial cells. Instead, the interaction of CTCF with Pax6 gene was regulated by decreased CTCF occupancy in its binding motifs upstream from Pax6 P0 promoter following the course of ES cell differentiation. Reduced occupancy of CTCF in the binding motif region upstream from the P0 promoter was due to increased DNA methylations in the CpG sites identified in the region. Furthermore, changes in DNA methylation levels in vitro and in vivo effectively altered methylation status of these identified CpG sites, which affected ability of CTCF to interact with the P0 promoter, resulting in increases in Pax6 expression. We conclude that there is an epigenetic mechanism involving regulations of Pax6 gene during ES cell differentiation to neural stem cells, which is through increases or decreases in methylation levels of Pax6 gene to effectively alter the ability of CTCF in control of Pax6 expression, respectively

    Colorectal Cancer Stem Cells Are Enriched in Xenogeneic Tumors Following Chemotherapy

    Get PDF
    Patients generally die of cancer after the failure of current therapies to eliminate residual disease. A subpopulation of tumor cells, termed cancer stem cells (CSC), appears uniquely able to fuel the growth of phenotypically and histologically diverse tumors. It has been proposed, therefore, that failure to effectively treat cancer may in part be due to preferential resistance of these CSC to chemotherapeutic agents. The subpopulation of human colorectal tumor cells with an ESA(+)CD44(+) phenotype are uniquely responsible for tumorigenesis and have the capacity to generate heterogeneous tumors in a xenograft setting (i.e. CoCSC). We hypothesized that if non-tumorigenic cells are more susceptible to chemotherapeutic agents, then residual tumors might be expected to contain a higher frequency of CoCSC.Xenogeneic tumors initiated with CoCSC were allowed to reach approximately 400 mm(3), at which point mice were randomized and chemotherapeutic regimens involving cyclophosphamide or Irinotecan were initiated. Data from individual tumor phenotypic analysis and serial transplants performed in limiting dilution show that residual tumors are enriched for cells with the CoCSC phenotype and have increased tumorigenic cell frequency. Moreover, the inherent ability of residual CoCSC to generate tumors appears preserved. Aldehyde dehydrogenase 1 gene expression and enzymatic activity are elevated in CoCSC and using an in vitro culture system that maintains CoCSC as demonstrated by serial transplants and lentiviral marking of single cell-derived clones, we further show that ALDH1 enzymatic activity is a major mediator of resistance to cyclophosphamide: a classical chemotherapeutic agent.CoCSC are enriched in colon tumors following chemotherapy and remain capable of rapidly regenerating tumors from which they originated. By focusing on the biology of CoCSC, major resistance mechanisms to specific chemotherapeutic agents can be attributed to specific genes, thereby suggesting avenues for improving cancer therapy

    Accumulation of CCR4+ CTLA-4hi FOXP3+CD25hi Regulatory T Cells in Colon Adenocarcinomas Correlate to Reduced Activation of Conventional T Cells

    Get PDF
    BACKGROUND: Colorectal cancer usually gives rise to a specific anti-tumor immune response, but for unknown reasons the resulting immunity is not able to clear the tumor. Recruitment of activated effector lymphocytes to the tumor is important for efficient anti-tumor responses, while the presence of regulatory T cells (Treg) down-modulate tumor-specific immunity. We therefore aimed to determine homing mechanisms and activation stage of Treg and effector T cell infiltrating colon tumors compared to cells from the unaffected mucosa in patients suffering from colon adenocarcinoma. METHODOLOGY/PRINCIPAL FINDINGS: Lymphocytes were isolated from unaffected and tumor mucosa from patients with colon adenocarcinoma, and flow cytometry, immunohistochemistry, and quantitative PCR was used to investigate the homing mechanisms and activation stage of infiltrating Treg and conventional lymphocytes. We detected significantly higher frequencies of CD25(high)FOXP3⁺CD127(low) putative Treg in tumors than unaffected mucosa, which had a complete demethylation in the FOXP3 promotor. Tumor-associated Treg had a high expression of CTLA-4, and some appeared to be antigen experienced effector/memory cells based on their expression of αEβ7 (CD103). There were also significantly fewer activated T cells and more CTLA-4⁺ conventional T cells susceptible to immune regulation in the tumor-associated mucosa. In contrast, CD8⁺granzyme B⁺ putative cytotoxic cells were efficiently recruited to the tumors. The frequencies of cells expressing α4β7 and the Th1 associated chemokine receptor CXCR3 were significantly decreased among CD4⁺ T cells in the tumor, while frequencies of CD4⁺CCR4⁺ lymphocytes were significantly increased. CONCLUSIONS/SIGNIFICANCE: This study shows that CCR4⁺CTLA4(hi) Treg accumulate in colon tumors, while the frequencies of activated conventional Th1 type T cells are decreased. The altered lymphocyte composition in colon tumors will probably diminish the ability of the immune system to effectively attack tumor cells, and reducing the Treg activity is an important challenge for future immunotherapy protocols

    Key signalling nodes in mammary gland development and cancer: Myc

    Get PDF
    Myc has been intensely studied since its discovery more than 25 years ago. Insight has been gained into Myc's function in normal physiology, where its role appears to be organ specific, and in cancer where many mechanisms contribute to aberrant Myc expression. Numerous signals and pathways converge on Myc, which in turn acts on a continuously growing number of identified targets, via transcriptional and nontranscriptional mechanisms. This review will concentrate on Myc as a signaling mediator in the mammary gland, discussing its regulation and function during normal development, as well as its activation and roles in breast cancer
    corecore