17 research outputs found

    Statistical analysis of fireballs: Seismic signature survey

    Get PDF
    Fireballs are infrequently recorded by seismic sensors on the ground. If recorded, they are usually reported as one-off events. This study is the first seismic bulk analysis of the largest single fireball data set, observed by the Desert Fireball Network (DFN) in Australia in the period 2014-2019. The DFN typically observes fireballs from cm-m scale impactors. We identified 25 fireballs in seismic time series data recorded by the Australian National Seismograph Network (ANSN). This corresponds to 1.8% of surveyed fireballs, at the kinetic energy range of 106-1010 J. The peaks observed in the seismic time series data were consistent with calculated arrival times of the direct airwave or ground-coupled Rayleigh wave caused by shock waves by the fireball in the atmosphere (either due to fragmentation or the passage of the Mach cone). Our work suggests that identification of fireball events in the seismic time series data depends on both physical properties of a fireball (such as fireball energy and entry angle in the atmosphere) and the sensitivity of a seismic instrument. This work suggests that fireballs are likely detectable within 200 km direct air distance between a fireball and seismic station, for sensors used in the ANSN. If each DFN observatory had been accompanied by a seismic sensor of similar sensitivity, 50% of surveyed fireballs could have been detected. These statistics justify the future consideration of expanding the DFN camera network into the seismic domain

    Successful Recovery of an Observed Meteorite Fall Using Drones and Machine Learning

    Get PDF
    We report the first-time recovery of a fresh meteorite fall using a drone and a machine-learning algorithm. The fireball was observed on 2021 April 1 over Western Australia by the Desert Fireball Network, for which a fall area was calculated for the predicted surviving mass. A search team arrived on-site and surveyed 5.1 km2 area over a 4 day period. A convolutional neural network, trained on previously recovered meteorites with fusion crusts, processed the images on our field computer after each flight. Meteorite candidates identified by the algorithm were sorted by team members using two user interfaces to eliminate false positives. Surviving candidates were revisited with a smaller drone, and imaged in higher resolution, before being eliminated or finally being visited in person. The 70 g meteorite was recovered within 50 m of the calculated fall line, demonstrating the effectiveness of this methodology, which will facilitate the efficient collection of many more observed meteorite falls

    The initiator methionine tRNA drives secretion of type II collagen from stromal fibroblasts to promote tumor growth and angiogenesis

    Get PDF
    Summary: Expression of the initiator methionine tRNA (tRNAi Met) is deregulated in cancer. Despite this fact, it is not currently known how tRNAi Met expression levels influence tumor progression. We have found that tRNAi Met expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAi Met in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAi Met contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAi Met gene (2+tRNAi Met mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAi Met mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAi Met mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAi Met significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAi Metoverexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl- 3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAi Met-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAi Met mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAi Met levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis

    Where Did They Come From, Where Did They Go: Grazing Fireballs

    Get PDF
    For centuries extremely long grazing fireball displays have fascinated observers and inspired people to ponder about their origins. The Desert Fireball Network is the largest single fireball network in the world, covering about one third of Australian skies. This expansive size has enabled us to capture a majority of the atmospheric trajectory of a spectacular grazing event that lasted over 90 s, penetrated as deep as ∼58.5 km, and traveled over 1300 km through the atmosphere before exiting back into interplanetary space. Based on our triangulation and dynamic analyses of the event, we have estimated the initial mass to be at least 60 kg, which would correspond to a 30 cm object given a chondritic density (3500 kg m-3). However, this initial mass estimate is likely a lower bound, considering the minimal deceleration observed in the luminous phase. The most intriguing quality of this close encounter is that the meteoroid originated from an Apollo-type orbit and was inserted into a Jupiter-family comet (JFC) orbit due to the net energy gained during the close encounter with Earth. Based on numerical simulations, the meteoroid will likely spend ∼200 kyr on a JFC orbit and have numerous encounters with Jupiter, the first of which will occur in 2025 January-March. Eventually the meteoroid will likely be ejected from the solar system or be flung into a trans-Neptunian orbit

    Pharmacists’ perceptions of their emerging general practice roles in UK primary care: a qualitative interview study

    No full text
    This is the final version of the article. Available from Royal College of General Practitioners via the DOI in this record.BACKGROUND: UK general practice is experiencing a workload crisis. Pharmacists are the third largest healthcare profession in the UK; however, their skills are a currently underutilised and potentially highly valuable resource for primary health care. This study forms part of the evaluation of an innovative training programme for pharmacists who are interested in extended roles in primary care, advocated by a UK collaborative '10-point GP workforce action plan'. AIM: To explore pharmacists' perceptions of primary care roles including the potential for greater integration of their profession into general practice. DESIGN AND SETTING: A qualitative interview study in UK primary care carried out between October 2015 and July 2016. METHOD: Pharmacists were purposively sampled by level of experience, geographical location, and type of workplace. Two confidential semi-structured telephone interviews were conducted - one before and one after the training programme. A constant comparative, inductive approach to thematic analysis was used. RESULTS: Sixteen participants were interviewed. The themes related to: initial expectations of the general practice role, varying by participants' experience of primary care; the influence of the training course with respect to managing uncertainty, critical appraisal skills, and confidence for the role; and predictions for the future of this role. CONCLUSION: There is enthusiasm and willingness among pharmacists for new, extended roles in primary care, which could effectively relieve GP workload pressures. A definition of the role, with examples of the knowledge, skills, and attributes required, should be made available to pharmacists, primary care teams, and the public. Training should include clinical skills teaching, set in context through exposure to general practice, and delivered motivationally by primary care practitioners.Funding was provided by Health Education England (South West)

    The main asteroid belt: The primary source of debris on comet-like orbits

    No full text
    Jupiter-family comets (JFCs) contribute a significant amount of debris to near-Earth space. However, telescopic observations of these objects seem to suggest that they have short physical lifetimes. If this is true, the material generated will also be short-lived, but fireball observation networks still detect material on cometary orbits. This study examines centimeter-to-meter-scale sporadic meteoroids detected by the Desert Fireball Network from 2014 to 2020 originating from JFC-like orbits. Analyzing each event's dynamic history and physical characteristics, we confidently determined whether they originated from the main asteroid belt or the trans-Neptunian region. Our results indicate that <4% of sporadic meteoroids on JFC-like orbits are genetically cometary. This observation is statistically significant and shows that cometary material is too friable to survive in near-Earth space. Even when considering shower contributions, meteoroids on JFC-like orbits are primarily from the main belt. Thus, the presence of genuine cometary meteorites in terrestrial collections is highly unlikely

    Determining Fireball Fates Using the α-β Criterion

    No full text
    As fireball networks grow, the number of events observed becomes unfeasible to manage by manual efforts. Reducing and analyzing big data requires automated data pipelines. Triangulation of a fireball trajectory can swiftly provide information on positions and, with timing information, velocities. However, extending this pipeline to determine the terminal mass estimate of a meteoroid is a complex next step. Established methods typically require assumptions to be made of the physical meteoroid characteristics (such as shape and bulk density). To determine which meteoroids may have survived entry there are empirical criteria that use a fireball's final height and velocity - low and slow final parameters are likely the best candidates. We review the more elegant approach of the dimensionless coefficient method. Two parameters, α (ballistic coefficient) and β (mass loss), can be calculated for any event with some degree of deceleration, given only velocity and height information. α and β can be used to analytically describe a trajectory with the advantage that they are not mere fitting coefficients; they also represent the physical meteoroid properties. This approach can be applied to any fireball network as an initial identification of key events and determine on which to concentrate resources for more in-depth analyses. We used a set of 278 events observed by the Desert Fireball Network to show how visualization in an α-β diagram can quickly identify which fireballs are likely meteorite candidates
    corecore