19 research outputs found
Statistical analysis of fireballs: Seismic signature survey
Fireballs are infrequently recorded by seismic sensors on the ground. If recorded, they are usually reported as one-off events. This study is the first seismic bulk analysis of the largest single fireball data set, observed by the Desert Fireball Network (DFN) in Australia in the period 2014-2019. The DFN typically observes fireballs from cm-m scale impactors. We identified 25 fireballs in seismic time series data recorded by the Australian National Seismograph Network (ANSN). This corresponds to 1.8% of surveyed fireballs, at the kinetic energy range of 106-1010 J. The peaks observed in the seismic time series data were consistent with calculated arrival times of the direct airwave or ground-coupled Rayleigh wave caused by shock waves by the fireball in the atmosphere (either due to fragmentation or the passage of the Mach cone). Our work suggests that identification of fireball events in the seismic time series data depends on both physical properties of a fireball (such as fireball energy and entry angle in the atmosphere) and the sensitivity of a seismic instrument. This work suggests that fireballs are likely detectable within 200 km direct air distance between a fireball and seismic station, for sensors used in the ANSN. If each DFN observatory had been accompanied by a seismic sensor of similar sensitivity, 50% of surveyed fireballs could have been detected. These statistics justify the future consideration of expanding the DFN camera network into the seismic domain
Successful Recovery of an Observed Meteorite Fall Using Drones and Machine Learning
We report the first-time recovery of a fresh meteorite fall using a drone and a machine-learning algorithm. The fireball was observed on 2021 April 1 over Western Australia by the Desert Fireball Network, for which a fall area was calculated for the predicted surviving mass. A search team arrived on-site and surveyed 5.1 km2 area over a 4 day period. A convolutional neural network, trained on previously recovered meteorites with fusion crusts, processed the images on our field computer after each flight. Meteorite candidates identified by the algorithm were sorted by team members using two user interfaces to eliminate false positives. Surviving candidates were revisited with a smaller drone, and imaged in higher resolution, before being eliminated or finally being visited in person. The 70 g meteorite was recovered within 50 m of the calculated fall line, demonstrating the effectiveness of this methodology, which will facilitate the efficient collection of many more observed meteorite falls
The initiator methionine tRNA drives secretion of type II collagen from stromal fibroblasts to promote tumor growth and angiogenesis
Summary:
Expression of the initiator methionine tRNA (tRNAi
Met)
is deregulated in cancer. Despite this fact, it is not
currently known how tRNAi
Met expression levels influence
tumor progression. We have found that tRNAi
Met
expression is increased in carcinoma-associated
fibroblasts, implicating deregulated expression of
tRNAi
Met in the tumor stroma as a possible contributor
to tumor progression. To investigate how elevated
stromal tRNAi
Met contributes to tumor progression,
we generated a mouse expressing additional copies
of the tRNAi
Met gene (2+tRNAi
Met mouse). Growth
and vascularization of subcutaneous tumor allografts
was enhanced in 2+tRNAi
Met mice compared with
wild-type littermate controls. Extracellular matrix
(ECM) deposited by fibroblasts from 2+tRNAi
Met
mice supported enhanced endothelial cell and fibroblast
migration. SILAC mass spectrometry indicated
that elevated expression of tRNAi
Met significantly
increased synthesis and secretion of certain types of
collagen, in particular type II collagen. Suppression
of type II collagen opposed the ability of tRNAi
Metoverexpressing
fibroblasts to deposit pro-migratory
ECM. We used the prolyl hydroxylase inhibitor ethyl-
3,4-dihydroxybenzoate (DHB) to determine whether
collagen synthesis contributes to the tRNAi
Met-driven
pro-tumorigenic stroma in vivo. DHB had no effect
on the growth of syngeneic allografts in wild-type
mice but opposed the ability of 2+tRNAi
Met mice to
support increased angiogenesis and tumor growth.
Finally, collagen II expression predicts poor prognosis
in high-grade serous ovarian carcinoma. Taken
together, these data indicate that increased tRNAi
Met
levels contribute to tumor progression by enhancing
the ability of stromal fibroblasts to synthesize and
secrete a type II collagen-rich ECM that supports
endothelial cell migration and angiogenesis
Where Did They Come From, Where Did They Go: Grazing Fireballs
For centuries extremely long grazing fireball displays have fascinated observers and inspired people to ponder about their origins. The Desert Fireball Network is the largest single fireball network in the world, covering about one third of Australian skies. This expansive size has enabled us to capture a majority of the atmospheric trajectory of a spectacular grazing event that lasted over 90 s, penetrated as deep as ā¼58.5 km, and traveled over 1300 km through the atmosphere before exiting back into interplanetary space. Based on our triangulation and dynamic analyses of the event, we have estimated the initial mass to be at least 60 kg, which would correspond to a 30 cm object given a chondritic density (3500 kg m-3). However, this initial mass estimate is likely a lower bound, considering the minimal deceleration observed in the luminous phase. The most intriguing quality of this close encounter is that the meteoroid originated from an Apollo-type orbit and was inserted into a Jupiter-family comet (JFC) orbit due to the net energy gained during the close encounter with Earth. Based on numerical simulations, the meteoroid will likely spend ā¼200 kyr on a JFC orbit and have numerous encounters with Jupiter, the first of which will occur in 2025 January-March. Eventually the meteoroid will likely be ejected from the solar system or be flung into a trans-Neptunian orbit
The Golden meteorite fall: Fireball trajectory, orbit, and meteorite characterization
The Golden (British Columbia, Canada) meteorite fall occurred on October 4, 2021 at 0534 UT with the first recovered fragment (1.3 kg) landing on an occupied bed. The associated fireball was recorded by numerous cameras permitting reconstruction of its trajectory and orbit. The fireball entered the atmosphere at a 54Ā° angle from the horizontal at a speed of 18 km sā1. The fireball reached a peak brightness of ā14, having first become luminous at a height of >84 km and ending at 18 km altitude. Analysis of the infrasonic record of the bolide produced an estimated mass of (Formula presented.) kg while modeling of the fireball light curve suggests an initial mass near 70 kg. The fireball experienced a major flare near 31 km altitude where more than half its mass was lost in the form of dust and gram-sized fragments under a dynamic pressure of 3.3 MPa. The strength and fragmentation behavior of the fireball were similar to those reported for other meteorite-producing fireballs (BoroviÄka etĀ al., 2020). Seven days after the fireball occurred, an additional 0.9 kg fragment was recovered during the second day of dedicated searching guided by initial trajectory and dark flight calculations. Additional searching in the fall and spring of 2021ā2022 located no additional fragments. The meteorite is an unbrecciated, low-shock (S2) ordinary chondrite of intermediate composition, typed as an L/LL5 with a grain density of ~3530 k gmā3, an average bulk density of 3150 kg mā3 and calculated porosity of ~10%. From noble gas measurements, the cosmic ray exposure age is 25 Ā± 4 Ma while gas retention ages are all >2 Ga. Short-lived radionuclides and noble gas measurements of the pre-atmospheric size overlap with estimates from infrasound and light curve modeling producing a preferred pre-atmospheric mass of 70ā200 kg. The orbit of Golden has a high inclination (23.5Ā°) and is consistent with delivery from the inner main belt. The highest probability (60%) of an origin is from the Hungaria group. We propose that Golden may originate among the background S-type asteroids found interspersed in the Hungaria region. The current collection of 18 L/LLāchondrite orbits shows a strong preference for origins in the inner main belt, suggesting multiple parent bodies may be required to explain the diversity in CRE ages and shock states
Recommended from our members
Understanding the influences on successful quality improvement in emergency general surgery: learning from the RCS Chole-QuIC project
Abstract: Background: Acute gallstone disease is the highest volume Emergency General Surgical presentation in the UK. Recent data indicate wide variations in the quality of care provided across the country, with national guidance for care delivery not implemented in most UK hospitals. Against this backdrop, the Royal College of Surgeons of England set up a 13-hospital quality improvement collaborative (Chole-QuIC) to support clinical teams to reduce time to surgery for patients with acute gallstone disease requiring emergency cholecystectomy. Methods: Prospective, mixed-methods process evaluation to answer the following: (1) how was the collaborative delivered by the faculty and received, understood and enacted by the participants; (2) what influenced teamsā ability to improve care for patients requiring emergency cholecystectomy? We collected and analysed a range of data including field notes, ethnographic observations of meetings, and project documentation. Analysis was based on the framework approach, informed by Normalisation Process Theory, and involved the creation of comparative case studies based on hospital performance during the project. Results: Chole-QuIC was delivered as planned and was well received and understood by participants. Four hospitals were identified as highly successful, based upon a substantial increase in the number of patients having surgery in line with national guidance. Conversely, four hospitals were identified as challenged, achieving no significant improvement. The comparative analysis indicate that six inter-related influences appeared most associated with improvement: (1) achieving clarity of purpose amongst site leads and key stakeholders; (2) capacity to lead and effective project support; (3) ideas to action; (4) learning from own and othersā experience; (5) creating additional capacity to do emergency cholecystectomies; and (6) coordinating/managing the patient pathway. Conclusion: Collaborative-based quality improvement is a viable strategy for emergency surgery but success requires the deployment of effective clinical strategies in conjunction with improvement strategies. In particular, achieving clarity of purpose about proposed changes amongst key stakeholders was a vital precursor to improvement, enabling the creation of additional surgical capacity and new pathways to be implemented effectively. Protected time, testing ideas, and the ability to learn quickly from data and experience were associated with greater impact within this cohort
Pharmacistsā perceptions of their emerging general practice roles in UK primary care: a qualitative interview study
This is the final version of the article. Available from Royal College of General Practitioners via the DOI in this record.BACKGROUND: UK general practice is experiencing a workload crisis. Pharmacists are the third largest healthcare profession in the UK; however, their skills are a currently underutilised and potentially highly valuable resource for primary health care. This study forms part of the evaluation of an innovative training programme for pharmacists who are interested in extended roles in primary care, advocated by a UK collaborative '10-point GP workforce action plan'. AIM: To explore pharmacists' perceptions of primary care roles including the potential for greater integration of their profession into general practice. DESIGN AND SETTING: A qualitative interview study in UK primary care carried out between October 2015 and July 2016. METHOD: Pharmacists were purposively sampled by level of experience, geographical location, and type of workplace. Two confidential semi-structured telephone interviews were conducted - one before and one after the training programme. A constant comparative, inductive approach to thematic analysis was used. RESULTS: Sixteen participants were interviewed. The themes related to: initial expectations of the general practice role, varying by participants' experience of primary care; the influence of the training course with respect to managing uncertainty, critical appraisal skills, and confidence for the role; and predictions for the future of this role. CONCLUSION: There is enthusiasm and willingness among pharmacists for new, extended roles in primary care, which could effectively relieve GP workload pressures. A definition of the role, with examples of the knowledge, skills, and attributes required, should be made available to pharmacists, primary care teams, and the public. Training should include clinical skills teaching, set in context through exposure to general practice, and delivered motivationally by primary care practitioners.Funding was provided by Health Education England (South West)
Comparing the dynamics of Jupiter-family Comets and comet-like fireballs
Context. Jupiter-family comets (JFCs), which originate from the Kuiper belt and scattered disk, exhibit low-inclination and chaotic trajectories due to close encounters with Jupiter. Despite their typically short incursions into the inner solar system, a notable number of them are on Earth-crossing orbits, with fireball networks detecting many objects on "JFC-like" (2 < TJ < 3) orbits. Aims. This investigation aims to examine the orbital dynamics of JFCs and comet-like fireballs over 104 yr timescales, focusing on the trajectories and stability of these objects in the context of gravitational interactions within the solar system. Methods. We employed an extensive fireball dataset from Desert Fireball Network (DFN), European Fireball Network (EFN), Fireball Recovery and InterPlanetary Observation Network (FRIPON), and Meteorite Observation and Recovery Project (MORP), alongside telescopically observed cometary ephemeris from the NASA HORIZONS database. The study integrates 646 fireball orbits with 661 JFC orbits for a comparative analysis of their orbital stability and evolution. Results. The analysis confirms frequent Jupiter encounters among most JFCs, inducing chaotic orbital behavior with limited predictability and short Lyapunov lifetimes (~120 yr), underscoring Jupiter's significant dynamical influence. In contrast, "JFC-like" meteoroids detected by fireball networks largely exhibit dynamics divergent from genuine JFCs, with 79-92% on "JFC-like" orbits shown not to be prone to frequent Jupiter encounters; in particular, only 1-5% of all fireballs detected by the four networks exhibit dynamics similar to that of actual JFCs. In addition, 22% (16 of 72) of near-Earth JFCs are on highly stable orbits, suggesting a potential main belt origin for some of the bodies. Conclusions. This extensive study delineates the stark dynamical contrast between JFCs and JFC-like meteoroids detected by global fireball networks. The majority of centimeter- and meter-scale meteoroids on JFC-like orbits exhibit remarkably stable trajectories, which starkly differ from the chaotic paths of their km-scale counterparts. Our findings suggest that the JFC-like objects observed by fireball networks predominantly originate from the outer main belt, with only a minor fraction being directly attributable to traditional JFCs
The main asteroid belt: The primary source of debris on comet-like orbits
Jupiter-family comets (JFCs) contribute a significant amount of debris to near-Earth space. However, telescopic observations of these objects seem to suggest that they have short physical lifetimes. If this is true, the material generated will also be short-lived, but fireball observation networks still detect material on cometary orbits. This study examines centimeter-to-meter-scale sporadic meteoroids detected by the Desert Fireball Network from 2014 to 2020 originating from JFC-like orbits. Analyzing each event's dynamic history and physical characteristics, we confidently determined whether they originated from the main asteroid belt or the trans-Neptunian region. Our results indicate that <4% of sporadic meteoroids on JFC-like orbits are genetically cometary. This observation is statistically significant and shows that cometary material is too friable to survive in near-Earth space. Even when considering shower contributions, meteoroids on JFC-like orbits are primarily from the main belt. Thus, the presence of genuine cometary meteorites in terrestrial collections is highly unlikely