48 research outputs found

    Positive contraction mappings for classical and quantum Schrodinger systems

    Full text link
    The classical Schrodinger bridge seeks the most likely probability law for a diffusion process, in path space, that matches marginals at two end points in time; the likelihood is quantified by the relative entropy between the sought law and a prior, and the law dictates a controlled path that abides by the specified marginals. Schrodinger proved that the optimal steering of the density between the two end points is effected by a multiplicative functional transformation of the prior; this transformation represents an automorphism on the space of probability measures and has since been studied by Fortet, Beurling and others. A similar question can be raised for processes evolving in a discrete time and space as well as for processes defined over non-commutative probability spaces. The present paper builds on earlier work by Pavon and Ticozzi and begins with the problem of steering a Markov chain between given marginals. Our approach is based on the Hilbert metric and leads to an alternative proof which, however, is constructive. More specifically, we show that the solution to the Schrodinger bridge is provided by the fixed point of a contractive map. We approach in a similar manner the steering of a quantum system across a quantum channel. We are able to establish existence of quantum transitions that are multiplicative functional transformations of a given Kraus map, but only for the case of uniform marginals. As in the Markov chain case, and for uniform density matrices, the solution of the quantum bridge can be constructed from the fixed point of a certain contractive map. For arbitrary marginal densities, extensive numerical simulations indicate that iteration of a similar map leads to fixed points from which we can construct a quantum bridge. For this general case, however, a proof of convergence remains elusive.Comment: 27 page

    Extremal flows in Wasserstein space

    Get PDF
    We develop an intrinsic geometric approach to the calculus of variations in theWasserstein space. We show that the flows associated with the Schr\ua8odinger bridge with general prior, with optimal mass transport, and with the Madelung fluid can all be characterized as annihilating the first variation of a suitable action. We then discuss the implications of this unified framework for stochastic mechanics: It entails, in particular, a sort of fluid-dynamic reconciliation between Bohm\u2019s and Nelson\u2019s stochastic mechanics

    Typical support and Sanov large deviations of correlated states

    Get PDF
    Discrete stationary classical processes as well as quantum lattice states are asymptotically confined to their respective typical support, the exponential growth rate of which is given by the (maximal ergodic) entropy. In the iid case the distinguishability of typical supports can be asymptotically specified by means of the relative entropy, according to Sanov's theorem. We give an extension to the correlated case, referring to the newly introduced class of HP-states.Comment: 29 pages, no figures, references adde

    No-Boundary Theta-Sectors in Spatially Flat Quantum Cosmology

    Full text link
    Gravitational theta-sectors are investigated in spatially locally homogeneous cosmological models with flat closed spatial surfaces in 2+1 and 3+1 spacetime dimensions. The metric ansatz is kept in its most general form compatible with Hamiltonian minisuperspace dynamics. Nontrivial theta-sectors admitting a semiclassical no-boundary wave function are shown to exist only in 3+1 dimensions, and there only for two spatial topologies. In both cases the spatial surface is nonorientable and the nontrivial no-boundary theta-sector unique. In 2+1 dimensions the nonexistence of nontrivial no-boundary theta-sectors is shown to be of topological origin and thus to transcend both the semiclassical approximation and the minisuperspace ansatz. Relation to the necessary condition given by Hartle and Witt for the existence of no-boundary theta-states is discussed.Comment: 30 p

    Unitary units in group algebras

    No full text
    corecore