5 research outputs found
Frequency of mutations in PRKN, PINK1, and DJ1 in Patients With Early-Onset Parkinson Disease from neighboring countries in Central Europe
INTRODUCTION: Approximately 10% of patients with Parkinson disease (PD) present with early-onset disease (EOPD), defined as diagnosis before 50 years of age. Genetic factors are known to contribute to EOPD, with most commonly observed mutations in PRKN, PINK1, and DJ1 genes. The aim of our study was to analyze the frequency of PRKN, PINK1, and DJ1 mutations in an EOPD series from 4 neighboring European countries: Czech Republic, Germany, Poland, and Ukraine. METHODS: Diagnosis of PD was made based on UK Brain Bank diagnostic criteria in departments experienced in movement disorders (1 from Czech Republic, 1 from Germany, 9 from Poland, and 3 from Ukraine). EOPD was defined as onset at or before 50 years of age. Of the 541 patients recruited to the study, 11 were Czech, 38 German, 476 Polish, and 16 Ukrainian. All cohorts were fully screened with Sanger sequencing for PRKN, PINK1, and DJ1 and multiplex ligation-dependent probe amplification for exon dosage. RESULTS: PRKN homozygous or double heterozygous mutations were identified in 17 patients: 1 Czech (9.1%), 1 German (2.6%), 14 Polish (2.9%), and 1 Ukrainian (6.3%). PINK1 homozygous mutations were only identified in 3 Polish patients (0.6%). There were no homozygous or compound heterozygous DJ1 mutations in analyzed subpopulations. One novel variant in PRKN was identified in the Ukrainian series. CONCLUSION: In the analyzed cohorts, mutations in the genes PRKN, PINK1, and DJ1 are not frequently observed
Heterozygous PINK1 p.G411S increases risk of Parkinson's disease via a dominant-negative mechanism
SEE GANDHI AND PLUN-FAVREAU DOI101093/AWW320 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: It has been postulated that heterozygous mutations in recessive Parkinson's genes may increase the risk of developing the disease. In particular, the PTEN-induced putative kinase 1 (PINK1) p.G411S (c.1231G>A, rs45478900) mutation has been reported in families with dominant inheritance patterns of Parkinson's disease, suggesting that it might confer a sizeable disease risk when present on only one allele. We examined families with PINK1 p.G411S and conducted a genetic association study with 2560 patients with Parkinson's disease and 2145 control subjects. Heterozygous PINK1 p.G411S mutations markedly increased Parkinson's disease risk (odds ratio = 2.92, P = 0.032); significance remained when supplementing with results from previous studies on 4437 additional subjects (odds ratio = 2.89, P = 0.027). We analysed primary human skin fibroblasts and induced neurons from heterozygous PINK1 p.G411S carriers compared to PINK1 p.Q456X heterozygotes and PINK1 wild-type controls under endogenous conditions. While cells from PINK1 p.Q456X heterozygotes showed reduced levels of PINK1 protein and decreased initial kinase activity upon mitochondrial damage, stress-response was largely unaffected over time, as expected for a recessive loss-of-function mutation. By contrast, PINK1 p.G411S heterozygotes showed no decrease of PINK1 protein levels but a sustained, significant reduction in kinase activity. Molecular modelling and dynamics simulations as well as multiple functional assays revealed that the p.G411S mutation interferes with ubiquitin phosphorylation by wild-type PINK1 in a heterodimeric complex. This impairs the protective functions of the PINK1/parkin-mediated mitochondrial quality control. Based on genetic and clinical evaluation as well as functional and structural characterization, we established p.G411S as a rare genetic risk factor with a relatively large effect size conferred by a partial dominant-negative function phenotype
Role for the microtubule-associated protein tau variant p.A152T in risk of α-synucleinopathies.
Objective:To assess the importance of MAPT variant p.A152T in the risk of synucleinopathies. Methods:In this case-control study, we screened a large global series of patients and controls, and assessed associations between p.A152T and disease risk. We included 3,229 patients with clinical Parkinson disease (PD), 442 with clinical dementia with Lewy bodies (DLB), 181 with multiple system atrophy (MSA), 832 with pathologically confirmed Lewy body disease (LBD), and 2,456 healthy controls. Results:The minor allele frequencies (MAF) in clinical PD cases (0.28%) and in controls (0.2%) were not found to be significantly different (odds ratio [OR] 1.37, 95% confidence interval [CI] 0.63-2.98, p = 0.42). However, a significant association was observed with clinical DLB (MAF 0.68%, OR 5.76, 95% CI 1.62-20.51, p = 0.007) and LBD (MAF 0.42%, OR 3.55, 95% CI 1.04-12.17, p = 0.04). Additionally, p.A152T was more common in patients with MSA compared to controls (MAF 0.55%, OR 4.68, 95% CI 0.85-25.72, p = 0.08) but this was not statistically significant and therefore should be interpreted with caution. Conclusions:Overall, our findings suggest that MAPT p.A152T is a rare low penetrance variant likely associated with DLB that may be influenced by coexisting LBD and AD pathology. Given the rare nature of the variant, further studies with greater sample size are warranted and will help to fully explain the role of p.A152T in the pathogenesis of the synucleinopathie
Cathepsin B p.Gly284Val variant in Parkinsons disease pathogenesis
Parkinson’s disease (PD) is generally considered a sporadic disorder, but a strong genetic background is often found. The aim of this study was to identify the underlying genetic cause of PD in two affected siblings and to subsequently assess the role of mutations in Cathepsin B (CTSB) in susceptibility to PD. A typical PD family was identified and whole-exome sequencing was performed in two affected siblings. Variants of interest were validated using Sanger sequencing. CTSB p.Gly284Val was genotyped in 2077 PD patients and 615 unrelated healthy controls from the Czech Republic, Ireland, Poland, Ukraine, and the USA. The gene burden analysis was conducted for the CTSB gene in an additional 769 PD probands from Mayo Clinic Florida familial PD cohort. CTSB expression and activity in patient-derived fibroblasts and controls were evaluated by qRT-PCR, western blot, immunocytochemistry, and enzymatic assay. The CTSB p.Gly284Val candidate variant was only identified in affected family members. Functional analysis of CTSB patient-derived fibroblasts under basal conditions did not reveal overt changes in endogenous expression, subcellular localization, or enzymatic activity in the heterozygous carrier of the CTSB variant. The identification of the CTSB p.Gly284Val may support the hypothesis that the CTSB locus harbors variants with differing penetrance that can determine the disease risk