207 research outputs found

    Plasma concentrations of osteopontin, but not thrombin-cleaved osteopontin, are associated with the presence and severity of nephropathy and coronary artery disease in patients with type 2 diabetes mellitus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of the present cross-sectional study was to assess possible associations between osteopontin (OPN), and thrombin-cleaved (N-half) OPN, and nephropathy and coronary artery disease (CAD) in patients with type 2 diabetes mellitus (T2DM).</p> <p>Methods</p> <p>Plasma levels of OPN, N-half OPN, and high-sensitivity C-reactive protein (hsCRP) were determined in 301 diabetic patients with (n = 226) or without (n = 75) angiographically documented CAD (luminal diameter narrowing >50%), as well as in 75 non-diabetic controls with normal angiography. The estimated glomerular filtration rate (eGFR) was calculated in all patients.</p> <p>Results</p> <p>Plasma levels of OPN and hsCRP were significantly higher in patients with T2DM compared with controls. In addition, there was a higher occurrence of moderate renal insufficiency and lower eGFR in patients with T2DM (all <it>P </it>< 0.01). T2DM patients in whom OPN levels were greater than the median value had higher serum creatinine levels, a greater prevalence of mild or moderate renal insufficiency, a higher incidence of CAD, and lower eGFR (all <it>P </it>< 0.05) than T2DM patients in whom OPN levels were the same as or lower than the median value. However, there were no differences in these parameters when patients were stratified according to plasma N-half OPN levels. Furthermore, there was a significant correlation between OPN, but not N-half OPN, and the severity of nephropathy and CAD in diabetes. After adjustment for potential confounders and treatments, multiple linear regression analysis demonstrated an independent association between OPN, but not N-half OPN, and eGFR. Multivariate logistic regression revealed that higher OPN levels conferred a fourfold greater risk of renal insufficiency and CAD in patients with T2DM.</p> <p>Conclusions</p> <p>The results of the present study demonstrate that there is an independent association between plasma levels of OPN, but not N-half OPN, and the presence and severity of nephropathy and CAD in diabetes.</p

    Clinical outcome of patients with recurrent or refractory localized Ewing's sarcoma family of tumors: A retrospective report from the Japan Ewing Sarcoma Study Group

    Get PDF
    [Background] Patients with Ewing's sarcoma family of tumors (ESFT) who experience relapse or progression have a poor prognosis. [Aim] This study aimed to identify the prognostic and therapeutic factors affecting overall survival (OS) of patients with recurrent or refractory localized ESFT. [Methods and results] Thirty-eight patients with localized ESFT who experienced first relapse or progression between 2000 and 2018 were retrospectively reviewed. The 5-year OS rate of the entire cohort was 48.3% (95% confidence interval, 29.9%-64.5%). Multivariate analysis of OS identified time to relapse or progression, but not stem cell transplantation (SCT), as the sole independent risk factor (hazard ratio, 35.8; P = .002). Among 31 patients who received salvage chemotherapy before local treatment, 21 received chemotherapy regimens that are not conventionally used for newly diagnosed ESFT. The objective response rate to first-line salvage chemotherapy was 55.2% in the 29 evaluable patients. Time to relapse or progression was significantly associated with response to first-line salvage chemotherapy (P = .006). [Conclusions] The present study fails to demonstrate significant clinical benefit of SCT for recurrent or refractory localized ESFT. Recently established chemotherapy regimens may increase the survival rate of patients with recurrent or refractory localized ESFT while attenuating the beneficial effect of SCT

    Molecular Mass and Localization of α-1,3-Glucan in Cell Wall Control the Degree of Hyphal Aggregation in Liquid Culture of Aspergillus nidulans

    Get PDF
    α-1,3-Glucan is one of the main polysaccharides in the cell wall of filamentous fungi. Aspergillus nidulans has two α-1,3-glucan synthase genes, agsA and agsB. We previously revealed that AgsB is a major α-1,3-glucan synthase in vegetative hyphae, but the function of AgsA remained unknown because of its low expression level and lack of phenotypic alteration upon gene disruption. To clarify the role of α-1,3-glucan in hyphal aggregation, we constructed strains overexpressing agsA (agsAOE) or agsB (agsBOE), in which the other α-1,3-glucan synthase gene was disrupted. In liquid culture, the wild-type and agsBOE strains formed tightly aggregated hyphal pellets, whereas agsAOE hyphae aggregated weakly. We analyzed the chemical properties of cell wall α-1,3-glucan from the agsAOE and agsBOE strains. The peak molecular mass of α-1,3-glucan from the agsAOE strain (1,480 ± 80 kDa) was much larger than that from the wild type (147 ± 52 kDa) and agsBOE (372 ± 47 kDa); however, the peak molecular mass of repeating subunits in α-1,3-glucan was almost the same (after Smith degradation: agsAOE, 41.6 ± 5.8 kDa; agsBOE, 38.3 ± 3.0 kDa). We also analyzed localization of α-1,3-glucan in the cell wall of the two strains by fluorescent labeling with α-1,3-glucan-binding domain–fused GFP (AGBD-GFP). α-1,3-Glucan of the agsBOE cells was clearly located in the outermost layer, whereas weak labeling was detected in the agsAOE cells. However, the agsAOE cells treated with β-1,3-glucanase were clearly labeled with AGBD-GFP. These observations suggest that β-1,3-glucan covered most of α-1,3-glucan synthesized by AgsA, although a small amount of α-1,3-glucan was still present in the outer layer. We also constructed a strain with disruption of the amyG gene, which encodes an intracellular α-amylase that synthesizes α-1,4-glucooligosaccharide as a primer for α-1,3-glucan biosynthesis. In this strain, the hyphal pellets and peak molecular mass of α-1,3-glucan (94.5 ± 1.4 kDa) were smaller than in the wild-type strain, and α-1,3-glucan was still labeled with AGBD-GFP in the outermost layer. Overall, these results suggest that hyphal pellet formation depends on the molecular mass and spatial localization of α-1,3-glucan as well as the amount of α-1,3-glucan in the cell wall of A. nidulans

    Analysis of Expressed Sequence Tags from the Fungus Aspergillus oryzae Cultured Under Different Conditions

    Get PDF
    We performed random sequencing of cDNAs from nine biologically or industrially important cultures of the industrially valuable fungus Aspergillus oryzae to obtain expressed sequence tags (ESTs). Consequently, 21 446 raw ESTs were accumulated and subsequently assembled to 7589 non-redundant consensus sequences (contigs). Among all contigs, 5491 (72.4%) were derived from only a particular culture. These included 4735 (62.4%) singletons, i.e. lone ESTs overlapping with no others. These data showed that consideration of culture grown under various conditions as cDNA sources enabled efficient collection of ESTs. BLAST searches against the public databases showed that 2953 (38.9%) of the EST contigs showed significant similarities to deposited sequences with known functions, 793 (10.5%) were similar to hypothetical proteins, and the remaining 3843 (50.6%) showed no significant similarity to sequences in the databases. Culture-specific contigs were extracted on the basis of the EST frequency normalized by the total number for each culture condition. In addition, contig sequences were compared with sequence sets in eukaryotic orthologous groups (KOGs), and classified into the KOG functional categories

    Organ preservation solution containing dissolved hydrogen gas from a hydrogen-absorbing alloy canister improves function of transplanted ischemic kidneys in miniature pigs.

    No full text
    Various methods have been devised to dissolve hydrogen gas in organ preservation solutions, including use of a hydrogen gas cylinder, electrolysis, or a hydrogen-generating agent. However, these methods require considerable time and effort for preparation. We investigated a practical technique for rapidly dissolving hydrogen gas in organ preservation solutions by using a canister containing hydrogen-absorbing alloy. The efficacy of hydrogen-containing organ preservation solution created by this method was tested in a miniature pig model of kidney transplantation from donors with circulatory arrest. The time required for dissolution of hydrogen gas was only 2-3 minutes. When hydrogen gas was infused into a bag containing cold ETK organ preservation solution at a pressure of 0.06 MPa and the bag was subsequently opened to the air, the dissolved hydrogen concentration remained at 1.0 mg/L or more for 4 hours. After warm ischemic injury was induced by circulatory arrest for 30 minutes, donor kidneys were harvested and perfused for 5 minutes with hydrogen-containing cold ETK solution or hydrogen-free cold ETK solution. The perfusion rate was faster from the initial stage with hydrogen-containing cold ETK solution than with hydrogen-free ETK solution. After storage of the kidney in hydrogen-free preservation solution for 1 hour before transplantation, no urine production was observed and blood flow was not detected in the transplanted kidney at sacrifice on postoperative day 6. In contrast, after storage in hydrogen-containing preservation solution for either 1 or 4 hours, urine was detected in the bladder and blood flow was confirmed in the transplanted kidney. This method of dissolving hydrogen gas in organ preservation solution is a practical technique for potentially converting damaged organs to transplantable organs that can be used safely in any clinical setting where organs are removed from donors

    Neutrophils and Neutrophil Extracellular Traps in Cardiovascular Disease: An Overview and Potential Therapeutic Approaches

    No full text
    Recent advances in pharmacotherapy have markedly improved the prognosis of cardiovascular disease (CVD) but have not completely conquered it. Therapies targeting the NOD-like receptor family pyrin domain containing 3 inflammasome and its downstream cytokines have proven effective in the secondary prevention of cardiovascular events, suggesting that inflammation is a target for treating residual risk in CVD. Neutrophil-induced inflammation has long been recognized as important in the pathogenesis of CVD. Circadian rhythm-related and disease-specific microenvironment changes give rise to neutrophil diversity. Neutrophils are primed by various stimuli, such as chemokines, cytokines, and damage-related molecular patterns, and the activated neutrophils contribute to the inflammatory response in CVD through degranulation, phagocytosis, reactive oxygen species generation, and the release of neutrophil extracellular traps (NETs). In particular, NETs promote immunothrombosis through the interaction with vascular endothelial cells and platelets and are implicated in the development of various types of CVD, such as acute coronary syndrome, deep vein thrombosis, and heart failure. NETs are promising candidates for anti-inflammatory therapy in CVD, and their efficacy has already been demonstrated in various animal models of the disease; however, they have yet to be clinically applied in humans. This narrative review discusses the diversity and complexity of neutrophils in the trajectory of CVD, the therapeutic potential of targeting NETs, and the related clinical issues

    Osteopontin in Cardiovascular Diseases

    No full text
    Unprecedented advances in secondary prevention have greatly improved the prognosis of cardiovascular diseases (CVDs); however, CVDs remain a leading cause of death globally. These findings suggest the need to reconsider cardiovascular risk and optimal medical therapy. Numerous studies have shown that inflammation, pro-thrombotic factors, and gene mutations are focused not only on cardiovascular residual risk but also as the next therapeutic target for CVDs. Furthermore, recent clinical trials, such as the Canakinumab Anti-inflammatory Thrombosis Outcomes Study trial, showed the possibility of anti-inflammatory therapy for patients with CVDs. Osteopontin (OPN) is a matricellular protein that mediates diverse biological functions and is involved in a number of pathological states in CVDs. OPN has a two-faced phenotype that is dependent on the pathological state. Acute increases in OPN have protective roles, including wound healing, neovascularization, and amelioration of vascular calcification. By contrast, chronic increases in OPN predict poor prognosis of a major adverse cardiovascular event independent of conventional cardiovascular risk factors. Thus, OPN can be a therapeutic target for CVDs but is not clinically available. In this review, we discuss the role of OPN in the development of CVDs and its potential as a therapeutic target
    corecore