97 research outputs found

    Optimal decremental connectivity in planar graphs

    Get PDF
    We show an algorithm for dynamic maintenance of connectivity information in an undirected planar graph subject to edge deletions. Our algorithm may answer connectivity queries of the form `Are vertices uu and vv connected with a path?' in constant time. The queries can be intermixed with any sequence of edge deletions, and the algorithm handles all updates in O(n)O(n) time. This results improves over previously known O(nlogn)O(n \log n) time algorithm

    Min-Cost Flow in Unit-Capacity Planar Graphs

    Get PDF
    In this paper we give an O~((nm)^(2/3) log C) time algorithm for computing min-cost flow (or min-cost circulation) in unit capacity planar multigraphs where edge costs are integers bounded by C. For planar multigraphs, this improves upon the best known algorithms for general graphs: the O~(m^(10/7) log C) time algorithm of Cohen et al. [SODA 2017], the O(m^(3/2) log(nC)) time algorithm of Gabow and Tarjan [SIAM J. Comput. 1989] and the O~(sqrt(n) m log C) time algorithm of Lee and Sidford [FOCS 2014]. In particular, our result constitutes the first known fully combinatorial algorithm that breaks the Omega(m^(3/2)) time barrier for min-cost flow problem in planar graphs. To obtain our result we first give a very simple successive shortest paths based scaling algorithm for unit-capacity min-cost flow problem that does not explicitly operate on dual variables. This algorithm also runs in O~(m^(3/2) log C) time for general graphs, and, to the best of our knowledge, it has not been described before. We subsequently show how to implement this algorithm faster on planar graphs using well-established tools: r-divisions and efficient algorithms for computing (shortest) paths in so-called dense distance graphs

    NC Algorithms for Weighted Planar Perfect Matching and Related Problems

    Get PDF
    Consider a planar graph G=(V,E) with polynomially bounded edge weight function w:E -> [0, poly(n)]. The main results of this paper are NC algorithms for finding minimum weight perfect matching in G. In order to solve this problems we develop a new relatively simple but versatile framework that is combinatorial in spirit. It handles the combinatorial structure of matchings directly and needs to only know weights of appropriately defined matchings from algebraic subroutines. Moreover, using novel planarity preserving reductions, we show how to find: maximum weight matching in G when G is bipartite; maximum multiple-source multiple-sink flow in G where c:E -> [1, poly(n)] is a polynomially bounded edge capacity function; minimum weight f-factor in G where f:V -> [1, poly(n)]; min-cost flow in G where c:E -> [1, poly(n)] is a polynomially bounded edge capacity function and b:V -> [1, poly(n)] is a polynomially bounded vertex demand function. There have been no known NC algorithms for these problems previously

    Algorithmic Applications of Baur-Strassen's Theorem: Shortest Cycles, Diameter and Matchings

    Full text link
    Consider a directed or an undirected graph with integral edge weights from the set [-W, W], that does not contain negative weight cycles. In this paper, we introduce a general framework for solving problems on such graphs using matrix multiplication. The framework is based on the usage of Baur-Strassen's theorem and of Strojohann's determinant algorithm. It allows us to give new and simple solutions to the following problems: * Finding Shortest Cycles -- We give a simple \tilde{O}(Wn^{\omega}) time algorithm for finding shortest cycles in undirected and directed graphs. For directed graphs (and undirected graphs with non-negative weights) this matches the time bounds obtained in 2011 by Roditty and Vassilevska-Williams. On the other hand, no algorithm working in \tilde{O}(Wn^{\omega}) time was previously known for undirected graphs with negative weights. Furthermore our algorithm for a given directed or undirected graph detects whether it contains a negative weight cycle within the same running time. * Computing Diameter and Radius -- We give a simple \tilde{O}(Wn^{\omega}) time algorithm for computing a diameter and radius of an undirected or directed graphs. To the best of our knowledge no algorithm with this running time was known for undirected graphs with negative weights. * Finding Minimum Weight Perfect Matchings -- We present an \tilde{O}(Wn^{\omega}) time algorithm for finding minimum weight perfect matchings in undirected graphs. This resolves an open problem posted by Sankowski in 2006, who presented such an algorithm but only in the case of bipartite graphs. In order to solve minimum weight perfect matching problem we develop a novel combinatorial interpretation of the dual solution which sheds new light on this problem. Such a combinatorial interpretation was not know previously, and is of independent interest.Comment: To appear in FOCS 201

    RecSys Challenge 2016: job recommendations based on preselection of offers and gradient boosting

    Full text link
    We present the Mim-Solution's approach to the RecSys Challenge 2016, which ranked 2nd. The goal of the competition was to prepare job recommendations for the users of the website Xing.com. Our two phase algorithm consists of candidate selection followed by the candidate ranking. We ranked the candidates by the predicted probability that the user will positively interact with the job offer. We have used Gradient Boosting Decision Trees as the regression tool.Comment: 6 pages, 1 figure, 2 tables, Description of 2nd place winning solution of RecSys 2016 Challange. To be published in RecSys'16 Challange Proceeding

    Improved Distance Queries and Cycle Counting by Frobenius Normal Form

    Get PDF
    Consider an unweighted, directed graph G with the diameter D. In this paper, we introduce the framework for counting cycles and walks of given length in matrix multiplication time O-tilde(n^omega). The framework is based on the fast decomposition into Frobenius normal form and the Hankel matrix-vector multiplication. It allows us to solve the following problems efficiently. * All Nodes Shortest Cycles - for every node return the length of the shortest cycle containing it. We give an O-tilde(n^omega) algorithm that improves the previous O-tilde(n^((omega + 3)/2)) algorithm for unweighted digraphs. * We show how to compute all D sets of vertices lying on cycles of length c in {1, ..., D} in randomized time O-tilde(n^omega). It improves upon an algorithm by Cygan where algorithm that computes a single set is presented. * We present a functional improvement of distance queries for directed, unweighted graphs. * All Pairs All Walks - we show almost optimal O-tilde(n^3) time algorithm for all walks counting problem. We improve upon the naive O(D n^omega) time algorithm

    Algorithmic Complexity of Power Law Networks

    Full text link
    It was experimentally observed that the majority of real-world networks follow power law degree distribution. The aim of this paper is to study the algorithmic complexity of such "typical" networks. The contribution of this work is twofold. First, we define a deterministic condition for checking whether a graph has a power law degree distribution and experimentally validate it on real-world networks. This definition allows us to derive interesting properties of power law networks. We observe that for exponents of the degree distribution in the range [1,2][1,2] such networks exhibit double power law phenomenon that was observed for several real-world networks. Our observation indicates that this phenomenon could be explained by just pure graph theoretical properties. The second aim of our work is to give a novel theoretical explanation why many algorithms run faster on real-world data than what is predicted by algorithmic worst-case analysis. We show how to exploit the power law degree distribution to design faster algorithms for a number of classical P-time problems including transitive closure, maximum matching, determinant, PageRank and matrix inverse. Moreover, we deal with the problems of counting triangles and finding maximum clique. Previously, it has been only shown that these problems can be solved very efficiently on power law graphs when these graphs are random, e.g., drawn at random from some distribution. However, it is unclear how to relate such a theoretical analysis to real-world graphs, which are fixed. Instead of that, we show that the randomness assumption can be replaced with a simple condition on the degrees of adjacent vertices, which can be used to obtain similar results. As a result, in some range of power law exponents, we are able to solve the maximum clique problem in polynomial time, although in general power law networks the problem is NP-complete

    Fully Dynamic Shortest Paths and Reachability in Sparse Digraphs

    Get PDF
    We study the exact fully dynamic shortest paths problem. For real-weighted directed graphs, we show a deterministic fully dynamic data structure with O?(mn^{4/5}) worst-case update time processing arbitrary s,t-distance queries in O?(n^{4/5}) time. This constitutes the first non-trivial update/query tradeoff for this problem in the regime of sparse weighted directed graphs. Moreover, we give a Monte Carlo randomized fully dynamic reachability data structure processing single-edge updates in O?(n?m) worst-case time and queries in O(?m) time. For sparse digraphs, such a tradeoff has only been previously described with amortized update time [Roditty and Zwick, SIAM J. Comp. 2008]

    Sensitivity and Dynamic Distance Oracles via Generic Matrices and Frobenius Form

    Full text link
    Algebraic techniques have had an important impact on graph algorithms so far. Porting them, e.g., the matrix inverse, into the dynamic regime improved best-known bounds for various dynamic graph problems. In this paper, we develop new algorithms for another cornerstone algebraic primitive, the Frobenius normal form (FNF). We apply our developments to dynamic and fault-tolerant exact distance oracle problems on directed graphs. For generic matrices AA over a finite field accompanied by an FNF, we show (1) an efficient data structure for querying submatrices of the first k1k\geq 1 powers of AA, and (2) a near-optimal algorithm updating the FNF explicitly under rank-1 updates. By representing an unweighted digraph using a generic matrix over a sufficiently large field (obtained by random sampling) and leveraging the developed FNF toolbox, we obtain: (a) a conditionally optimal distance sensitivity oracle (DSO) in the case of single-edge or single-vertex failures, providing a partial answer to the open question of Gu and Ren [ICALP'21], (b) a multiple-failures DSO improving upon the state of the art (vd. Brand and Saranurak [FOCS'19]) wrt. both preprocessing and query time, (c) improved dynamic distance oracles in the case of single-edge updates, and (d) a dynamic distance oracle supporting vertex updates, i.e., changing all edges incident to a single vertex, in O~(n2)\tilde{O}(n^2) worst-case time and distance queries in O~(n)\tilde{O}(n) time.Comment: To appear at FOCS 202
    corecore