5 research outputs found

    Accelerated Design of Block Copolymers: An Unbiased Exploration Strategy via Fusion of Molecular Dynamics Simulations and Machine Learning

    Full text link
    Star block copolymers (s-BCPs) have potential applications as novel surfactants or amphiphiles for emulsification, compatbilization, chemical transformations and separations. s-BCPs are star-shaped macromolecules comprised of linear chains of different chemical blocks (e.g., solvophilic and solvophobic blocks) that are covalently joined at one junction point. Various parameters of these macromolecules can be tuned to obtain desired surface properties, including the number of arms, composition of the arms, and the degree-of-polymerization of the blocks (or the length of the arm). This makes identification of the optimal s-BCP design highly non-trivial as the total number of plausible s-BCPs architectures is experimentally or computationally intractable. In this work, we use molecular dynamics (MD) simulations coupled with reinforcement learning based Monte Carlo tree search (MCTS) to identify s-BCPs designs that minimize the interfacial tension between polar and non-polar solvents. We first validate the MCTS approach for design of small- and medium-sized s-BCPs, and then use it to efficiently identify sequences of copolymer blocks for large-sized s-BCPs. The structural origins of interfacial tension in these systems are also identified using the configurations obtained from MD simulations. Chemical insights on the arrangement of copolymer blocks that promote lower interfacial tension were mined using machine learning (ML) techniques. Overall, this work provides an efficient approach to solve design problems via fusion of simulations and ML and provide important groundwork for future experimental investigation of s-BCPs sequences for various applications

    Metal-induced rapid transformation of diamond into single and multilayer graphene on wafer scale

    No full text
    The degradation of intrinsic properties of graphene during the transfer process constitutes a major challenge in graphene device fabrication, stimulating the need for direct growth of graphene on dielectric substrates. Previous attempts of metal-induced transformation of diamond and silicon carbide into graphene suffers from metal contamination and inability to scale graphene growth over large area. Here, we introduce a direct approach to transform polycrystalline diamond into high-quality graphene layers on wafer scale (4 inch in diameter) using a rapid thermal annealing process facilitated by a nickel, Ni thin film catalyst on top. We show that the process can be tuned to grow single or multilayer graphene with good electronic properties. Molecular dynamics simulations elucidate the mechanism of graphene growth on polycrystalline diamond. In addition, we demonstrate the lateral growth of free-standing graphene over micron-sized pre-fabricated holes, opening exciting opportunities for future graphene/diamond-based electronics

    Strongly correlated perovskite lithium ion shuttles

    No full text
    © 2018 National Academy of Sciences. All rights reserved. Solid-state ion shuttles are of broad interest in electrochemical devices, nonvolatile memory, neuromorphic computing, and bio-mimicry utilizing synthetic membranes. Traditional design approaches are primarily based on substitutional doping of dissimilar valent cations in a solid lattice, which has inherent limits on dopant concentration and thereby ionic conductivity. Here, we demonstrate perovskite nickelates as Li-ion shuttles with simultaneous suppression of electronic transport via Mott transition. Electrochemically lithiated SmNiO3 (Li-SNO) contains a large amount of mobile Li+ located in interstitial sites of the perovskite approaching one dopant ion per unit cell. A significant lattice expansion associated with interstitial doping allows for fast Li+ conduction with reduced activation energy. We further present a generalization of this approach with results on other rare-earth perovskite nickelates as well as dopants such as Na+. The results highlight the potential of quantum materials and emergent physics in design of ion conductors
    corecore