415 research outputs found
Recommended from our members
Neonatal sepsis in South Asia: huge burden and spiralling antimicrobial resistance.
Lesion detection and Grading of Diabetic Retinopathy via Two-stages Deep Convolutional Neural Networks
We propose an automatic diabetic retinopathy (DR) analysis algorithm based on
two-stages deep convolutional neural networks (DCNN). Compared to existing
DCNN-based DR detection methods, the proposed algorithm have the following
advantages: (1) Our method can point out the location and type of lesions in
the fundus images, as well as giving the severity grades of DR. Moreover, since
retina lesions and DR severity appear with different scales in fundus images,
the integration of both local and global networks learn more complete and
specific features for DR analysis. (2) By introducing imbalanced weighting map,
more attentions will be given to lesion patches for DR grading, which
significantly improve the performance of the proposed algorithm. In this study,
we label 12,206 lesion patches and re-annotate the DR grades of 23,595 fundus
images from Kaggle competition dataset. Under the guidance of clinical
ophthalmologists, the experimental results show that our local lesion detection
net achieve comparable performance with trained human observers, and the
proposed imbalanced weighted scheme also be proved to significantly improve the
capability of our DCNN-based DR grading algorithm
Intelligent Multifunctional VO2/SiO2/TiO2 Coatings for Self-Cleaning, Energy-Saving Window Panels
Monoclinic vanadium(IV) oxide (VO2) has received much attention for applications as intelligent solar control coatings, with the potential to reduce the need for both heating and air conditioning loads within building infrastructure. Chemical vapor deposition, a high-throughput industrially scalable method, is an ideal technology for the deposition of VO2 thin films on window panels. However, these films suffer from poor adhesion and are chemically susceptible to attack. In addition, the VO2 films with optimum solar modulation are unfortunately translucent, restraining their commercial use in energy-efficient fenestration. In this work, multifunctional, robust, layered VO2/SiO2/TiO2 films were quickly deposited on glass substrates using atmospheric-pressure chemical vapor deposition and fully characterized using structural, vibrational spectroscopy, and electron microscopy techniques. The VO2/SiO2/TiO2 thin films were designed to exhibit excellent solar modulation properties as well as high transparency and resistance to abrasion, compared to single VO2 films of the same thickness. The films also showed self-cleaning properties comparable to those of commercial Pilkington Activ glass, as demonstrated here during the photodegradation of a model organic pollutant (stearic acid). The SiO2 acted as a barrier layer, preventing the diffusion of Ti4+ ions into the VO2 layer but it also promoted the optical properties and allowed for superior thermochromic behavior when compared to single VO2 films. The system was modeled to determine the effect of the individual components on the properties of the overall material. It was found that the deposition of the SiO2/TiO2 overlayer resulted in a dramatic improvement of visible-light transmission (∼30% increase when compared to single-layer analogues) while also doubling the solar modulation of the material
Optimized Atmospheric-Pressure Chemical Vapor Deposition Thermochromic VO2 Thin Films for Intelligent Window Applications
Monoclinic vanadium(IV) oxide (VO2) has been widely studied for energy-efficient glazing applications because of its thermochromic properties, displaying a large change in transmission of near-IR wavelengths between the hot and cold states. The optimization of the reaction between VCl4 and ethyl acetate via atmospheric-pressure chemical vapor deposition (APCVD) was shown to produce thin films of monoclinic VO2 with excellent thermochromic properties (ΔTsol = 12%). The tailoring of the thermochromic and visible light transmission was shown to be possible by altering the density and morphology of the deposited films. The films were characterized by X-ray diffraction, atomic-force microscopy, scanning electron microscopy, ellipsometry, and UV–vis spectrometry. This article provides useful design rules for the synthesis of high-quality VO2 thin films by APCVD
On Composite Two Higgs Doublet Models
We investigate composite two Higgs doublet models realized as pseudo
Goldstone modes, generated through the spontaneous breaking of a global
symmetry due to strong dynamic at the TeV scale. A detailed comparative survey
of two possible symmetry breaking patterns, SU(5) -> SU(4) x U(1) and SU(5) x
SU(4), is made. We point out choices for the Standard Model fermion
representations that can alleviate some phenomenological constraints, with
emphasis towards a simultaneous solution of anomalous Zb\bar{b} coupling and
Higgs mediated Flavor Changing Neutral Currents. We also write down the kinetic
lagrangian for several models leading to Two Higgs Doublets and identify the
anomalous contributions to the T parameter. Moreover, we describe a model based
on the breaking in which there is no tree-level breaking of
custodial symmetry, discussing also the possible embeddings for the fermion
fields.Comment: 17 pages. Mistake corrected, added one section on a T- and flavor
safe model based on SO(9)/SO(8). Matches published versio
Particle size, morphology and phase transitions in hydrothermally produced VO2(D)
Different morphologies and sizes of VO 2 (D) particles were synthesised via hydrothermal synthesis using ammonium metavanadate (NH 4 VO 3 ) or vanadium pentoxide (V 2 O 5 ) as a vanadium precursor. By adjusting the concentration of vanadium precursors and the pH of the starting solution, a variety of morphologies and sizes of VO 2 (D) particles from 20 nm to 3 μm could be produced. A flower-shape morphology was obtained under strongly acidic conditions, passing through star-shape particles of 1 μm at pH 2.5 and finally obtaining homogeneous round balls of around 3 μm at pH 6.9. Nanoparticles were produced hydrothermally using V 2 O 5 as a precursor and hydrazine as a reducing agent. The transition from VO 2 (D) to thermochromic VO 2 (R) in micron scale particles occurred at 350 °C under vacuum. However, the nanoparticles of VO 2 (D) had a significantly lower VO 2 (D) to thermochromic VO 2 (R) transition temperature of 165 °C after annealing for only a few minutes. This is, to our knowledge, the lowest annealing temperature and time reported in the literature in order to obtain a thermochromic VO 2 material via another VO 2 phase. After the conversion of VO 2 (D) microparticles to thermochromic VO 2 (R), the metal to insulator transition temperature is 61 ± 1 °C for the heating cycle and 53 ± 1 °C for the cooling cycle. However, VO 2 (R) nanoparticles showed a significantly reduced metal insulator transition temperature of 59 ± 1 °C and 42 ± 1 °C for the cooling cycle lower than that reported in the literature for bulk VO 2 . This is important due to the need for having a compound with a switching temperature closer to room temperature to be used in smart window devices for energy consumption. W-VO 2 (D) star shape microparticle samples were prepared using 2-7 at% of the dopant (using ammonium metavanadate as a precursor), although unexpectedly this does not seem to be a viable route to a reduced metal to insulator transition in this system
Mapping the unconventional orbital texture in topological crystalline insulators
The newly discovered topological crystalline insulators (TCIs) harbor a
complex band structure involving multiple Dirac cones. These materials are
potentially highly tunable by external electric field, temperature or strain
and could find future applications in field-effect transistors, photodetectors,
and nano-mechanical systems. Theoretically, it has been predicted that
different Dirac cones, offset in energy and momentum-space, might harbor vastly
different orbital character, a unique property which if experimentally
realized, would present an ideal platform for accomplishing new spintronic
devices. However, the orbital texture of the Dirac cones, which is of immense
importance in determining a variety of materials properties, still remains
elusive in TCIs. Here, we unveil the orbital texture in a prototypical TCI
PbSnSe. By using Fourier-transform (FT) scanning tunneling
spectroscopy (STS) we measure the interference patterns produced by the
scattering of surface state electrons. We discover that the intensity and
energy dependences of FTs show distinct characteristics, which can directly be
attributed to orbital effects. Our experiments reveal the complex band topology
involving two Lifshitz transitions and establish the orbital nature of the
Dirac bands in this new class of topological materials, which could provide a
different pathway towards future quantum applications
Qualitative XANES and XPS Analysis of Substrate Effects in VO2 Thin Films: A Route to Improving Chemical Vapor Deposition Synthetic Methods?
Vanadium(IV) oxide thin films were synthesized via atmospheric pressure chemical vapor deposition by the reaction between vanadium(IV) chloride and ethyl acetate at 550 °C. The substrate was varied with films being deposited on glass, SnO2, and F-doped SnO2. The films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, UV–vis spectroscopy, scanning electron microscopy, and X-ray absorption near-edge structure. The influence of the electronic contribution of the substrate on the deposited VO2 film was found to be key to the functional properties observed. Highly electron-withdrawing substituents, such as fluorine, favored the formation of V5+ ions in the crystal lattice and so reduced the thermochromic properties. By considering both the structural and electronic contributions of the substrate, it is possible to establish the best substrate choices for the desired functional properties of the VO2 thin films synthesized
Expression of Drosophila Adenosine Deaminase in Immune Cells during Inflammatory Response
Extra-cellular adenosine is an important regulator of inflammatory responses. It is generated from released ATP by a cascade of ectoenzymes and degraded by adenosine deaminase (ADA). There are two types of enzymes with ADA activity: ADA1 and ADGF/ADA2. ADA2 activity originates from macrophages and dendritic cells and is associated with inflammatory responses in humans and rats. Drosophila possesses a family of six ADGF proteins with ADGF-A being the main regulator of extra-cellular adenosine during larval stages. Herein we present the generation of a GFP reporter for ADGF-A expression by a precise replacement of the ADGF-A coding sequence with GFP using homologous recombination. We show that the reporter is specifically expressed in aggregating hemocytes (Drosophila immune cells) forming melanotic capsules; a characteristic of inflammatory response. Our vital reporter thus confirms ADA expression in sites of inflammation in vivo and demonstrates that the requirement for ADA activity during inflammatory response is evolutionary conserved from insects to vertebrates. Our results also suggest that ADA activity is achieved specifically within sites of inflammation by an uncharacterized post-transcriptional regulation based mechanism. Utilizing various mutants that induce melanotic capsule formation and also a real immune challenge provided by parasitic wasps, we show that the acute expression of the ADGF-A protein is not driven by one specific signaling cascade but is rather associated with the behavior of immune cells during the general inflammatory response. Connecting the exclusive expression of ADGF-A within sites of inflammation, as presented here, with the release of energy stores when the ADGF-A activity is absent, suggests that extra-cellular adenosine may function as a signal for energy allocation during immune response and that ADGF-A/ADA2 expression in such sites of inflammation may regulate this role
Lay perceptions of predictive testing for diabetes based on DNA test results versus family history assessment: a focus group study
<p>Abstract</p> <p>Background</p> <p>This study assessed lay perceptions of issues related to predictive genetic testing for multifactorial diseases. These perceived issues may differ from the "classic" issues, e.g. autonomy, discrimination, and psychological harm that are considered important in predictive testing for monogenic disorders. In this study, type 2 diabetes was used as an example, and perceptions with regard to predictive testing based on DNA test results and family history assessment were compared.</p> <p>Methods</p> <p>Eight focus group interviews were held with 45 individuals aged 35-70 years with (n = 3) and without (n = 1) a family history of diabetes, mixed groups of these two (n = 2), and diabetes patients (n = 2). All interviews were transcribed and analysed using Atlas-ti.</p> <p>Results</p> <p>Most participants believed in the ability of a predictive test to identify people at risk for diabetes and to motivate preventive behaviour. Different reasons underlying motivation were considered when comparing DNA test results and a family history risk assessment. A perceived drawback of DNA testing was that diabetes was considered not severe enough for this type of risk assessment. In addition, diabetes family history assessment was not considered useful by some participants, since there are also other risk factors involved, not everyone has a diabetes family history or knows their family history, and it might have a negative influence on family relations. Respect for autonomy of individuals was emphasized more with regard to DNA testing than family history assessment. Other issues such as psychological harm, discrimination, and privacy were only briefly mentioned for both tests.</p> <p>Conclusion</p> <p>The results suggest that most participants believe a predictive genetic test could be used in the prevention of multifactorial disorders, such as diabetes, but indicate points to consider before both these tests are applied. These considerations differ with regard to the method of assessment (DNA test or obtaining family history) and also differ from monogenic disorders.</p
- …