237 research outputs found
Advances in Basic and Translational Research as Part of the Center for the Study of Complex Malaria in India.
The Center for the Study of Complex Malaria in India (CSCMi) is one of 10 International Centers of Excellence in Malaria Research funded by the National Institutes of Health since 2010. The Center combines innovative research with capacity building and technology transfer to undertake studies with clinical and translational impact that will move malaria control in India toward the ultimate goal of malaria elimination/eradication. A key element of each research site in the four states of India (Tamil Nadu, Gujarat, Odisha, and Meghalaya) has been undertaking community- and clinic-based epidemiology projects to characterize the burden of malaria in the region. Demographic and clinical data and samples collected during these studies have been used in downstream projects on, for example, the widespread use of mosquito repellants, the population genomics of Plasmodium vivax, and the serological responses to P. vivax and Plasmodium falciparum antigens that reflect past or present exposure. A focus has been studying the pathogenesis of severe malaria caused by P. falciparum through magnetic resonance imaging of cerebral malaria patients. Here we provide a snapshot of some of the basic and applied research the CSCMi has undertaken over the past 12 years and indicate the further research and/or clinical and translational impact these studies have had
Adult cerebral malaria: acute and subacute imaging findings, long-term clinical consequences
Cerebral malaria is an important cause of mortality and neurodisability in endemic regions. We show magnetic resonance imaging (MRI) features suggestive of cytotoxic and vasogenic cerebral edema followed by microhemorrhages in 2 adult UK cases, comparing them with an Indian cohort. Long-term follow-up images correlate ongoing changes with residual functional impairment
Adult cerebral malaria: acute and subacute imaging findings, long-term clinical consequences.
Cerebral malaria is an important cause of mortality and neurodisability in endemic regions. We show MRI features suggestive of cytotoxic and vasogenic cerebral edema followed by microhemorrhages in two adult UK cases, comparing them with an Indian cohort. Long-term follow-up images correlate ongoing changes with residual functional impairment
Malaria inflammation by xanthine oxidase-produced reactive oxygen species.
Malaria is a highly inflammatory disease caused by Plasmodium infection of host erythrocytes. However, the parasite does not induce inflammatory cytokine responses in macrophages in vitro and the source of inflammation in patients remains unclear. Here, we identify oxidative stress, which is common in malaria, as an effective trigger of the inflammatory activation of macrophages. We observed that extracellular reactive oxygen species (ROS) produced by xanthine oxidase (XO), an enzyme upregulated during malaria, induce a strong inflammatory cytokine response in primary human monocyte-derived macrophages. In malaria patients, elevated plasma XO activity correlates with high levels of inflammatory cytokines and with the development of cerebral malaria. We found that incubation of macrophages with plasma from these patients can induce a XO-dependent inflammatory cytokine response, identifying a host factor as a trigger for inflammation in malaria. XO-produced ROS also increase the synthesis of pro-IL-1β, while the parasite activates caspase-1, providing the two necessary signals for the activation of the NLRP3 inflammasome. We propose that XO-produced ROS are a key factor for the trigger of inflammation during malaria
Magnetic Resonance Imaging of Cerebral Malaria Patients Reveals Distinct Pathogenetic Processes in Different Parts of the Brain
The mechanisms underlying the rapidly reversible brain swelling described in patients with cerebral malaria (CM) are unknown. Using a 1.5-Tesla (T) magnetic resonance imaging (MRI) scanner, we undertook an observational study in Rourkela, India, of 11 Indian patients hospitalized with CM and increased brain volume. Among the 11 cases, there were 5 adults and 6 children. All patients had reduced consciousness and various degrees of cortical swelling at baseline. The latter was predominately posterior in distribution. The findings on diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) maps were consistent with vasogenic edema in all cases. Reversibility after 48 to 72Â h was observed in >90% of cases. DWI/ADC mismatch suggested the additional presence of cytotoxic edema in the basal nuclei of 5 patients; all of these had perfusion parameters consistent with vascular engorgement and not with ischemic infarcts. Our results suggest that an impairment of the blood-brain barrier is responsible for the brain swelling in CM. In 5 cases, vasogenic edema occurred in conjunction with changes in the basal nuclei consistent with venous congestion, likely to be caused by the sequestration of Plasmodium falciparum-infected erythrocytes. While both mechanisms have been individually postulated to play an important role in the development of CM, this is the first demonstration of their concurrent involvement in different parts of the brain. The clinical and radiological characteristics observed in the majority of our patients are consistent with posterior reversible encephalopathy syndrome (PRES), and we show for the first time a high frequency of PRES in the context of CM. IMPORTANCE The pathophysiology and molecular mechanisms underlying cerebral malaria (CM) are still poorly understood. Recent neuroimaging studies demonstrated that brain swelling is a common feature in CM and a major contributor to death in pediatric patients. Consequently, determining the precise mechanisms responsible for this swelling could open new adjunct therapeutic avenues in CM patients. Using an MRI scanner with a higher resolution than the ones used in previous reports, we identified two distinct origins of brain swelling in both adult and pediatric patients from India, occurring in distinct parts of the brain. Our results support the hypothesis that both endothelial dysfunction and microvascular obstruction by Plasmodium falciparum-infected erythrocytes make independent contributions to the pathogenesis of CM, providing opportunities for novel therapeutic interventions
The effectiveness of malaria camps as part of the malaria control program in Odisha, India
Durgama Anchalare Malaria Nirakaran (DAMaN) is a multi-component malaria intervention for hard-to-reach villages in Odisha, India. The main component, malaria camps (MCs), consists of mass screening, treatment, education, and intensified vector control. We evaluated MC effectiveness using a quasi-experimental cluster-assigned stepped-wedge study with a pretest–posttest control group in 15 villages: six immediate (Arm A), six delayed (Arm B), and three previous interventions (Arm C). The primary outcome was PCR + Plasmodium infection prevalence. The time (i.e., baseline vs. follow-up 3) x study arm interaction term shows that there were statistically significant lower odds of PCR + Plasmodium infection in Arm A (AOR = 0.36, 95% CI = 0.17, 0.74) but not Arm C as compared to Arm B at the third follow-up. The cost per person ranged between US4–9, and the cost per treated US$82–1,614, per camp round. These results suggest that the DAMaN intervention is a promising and financially feasible approach for malaria control
Evidence of Brain Alterations in Noncerebral Falciparum Malaria.
BACKGROUND: Cerebral malaria in adults is associated with brain hypoxic changes on magnetic resonance (MR) images and has a high fatality rate. Findings of neuroimaging studies suggest that brain involvement also occurs in patients with uncomplicated malaria (UM) or severe noncerebral malaria (SNCM) without coma, but such features were never rigorously characterized. METHODS: Twenty patients with UM and 21 with SNCM underwent MR imaging on admission and 44-72 hours later, as well as plasma analysis. Apparent diffusion coefficient (ADC) maps were generated, with values from 5 healthy individuals serving as controls. RESULTS: Patients with SNCM had a wide spectrum of cerebral ADC values, including both decreased and increased values compared with controls. Patients with low ADC values, indicating cytotoxic edema, showed hypoxic patterns similar to cerebral malaria despite the absence of deep coma. Conversely, high ADC values, indicative of mild vasogenic edema, were observed in both patients with SNCM and patients with UM. Brain involvement was confirmed by elevated circulating levels of S100B. Creatinine was negatively correlated with ADC in SNCM, suggesting an association between acute kidney injury and cytotoxic brain changes. CONCLUSIONS: Brain involvement is common in adults with SNCM and a subgroup of hospitalized patients with UM, which warrants closer neurological follow-up. Increased creatinine in SNCM may render the brain more susceptible to cytotoxic edema
The Impact, Emerging Needs, and New Research Questions Arising from 12 Years of the Center for the Study of Complex Malaria in India
The Center for the Study of Complex Malaria in India (CSCMi) was launched in 2010 with the overall goal of addressing major gaps in our understanding of "complex malaria" in India through projects on the epidemiology, transmission, and pathogenesis of the disease. The Center was mandated to adopt an integrated approach to malaria research, including building capacity, developing infrastructure, and nurturing future malaria leaders while conducting relevant and impactful studies to assist India as it moves from control to elimination. Here, we will outline some of the interactions and impacts the Center has had with malaria policy and control counterparts in India, as well as describe emerging needs and new research questions that have become apparent over the past 12 years
- …