10 research outputs found

    Immune responses to typhoid conjugate vaccine in a two dose schedule among Nepalese children <2 years of age

    Get PDF
    Background Previously, the Vi-typhoid conjugate vaccine (Vi-TT) was found to be highly efficacious in Nepalese children under 16 years of age. We assessed the immunogenicity of Vi-TT at 9 and 12 months of age and response to a booster dose at 15 months of age. Methods Infants were recruited at Patan Hospital, Kathmandu and received an initial dose of Vi-TT at 9 or 12 months of age with a booster dose at 15 months of age. Blood was taken at four timepoints, and antibody titres were measured using a commercial ELISA kit. The primary study outcome was seroconversion (4-fold rise in antibody titre) of IgG one month after both the doses. Findings Fifty children were recruited to each study group.Some visits were disrupted by the COVID19 pandemic and occurred out of protocol windows. Both the study groups attained 100 % IgG seroconversion after the initial dose. IgG seroconversion in the 9-month group was significantly higher than in the 12-month group (68.42 % vs 25.8 %, p < 0.001). Among individuals who attended visits per protocol, IgG seroconversion after the first dose occurred in 100 % of individuals (n = 27/27 in 9-month and n = 32/32 in 12-month group). However, seroconversion rates after the second dose were 80 % in the 9-month and 0 % in the shorter dose-interval 12-month group (p < 0.001) (n = 16/20 and n = 0/8, respectively). Interpretation Vi-TT is highly immunogenic at both 9 and 12 months of age. Stronger response to a booster in the 9-month group is likely due to the longer interval between doses

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    A fractional order-based mixture of central Wishart (FMoCW) model for reconstructing white matter fibers from diffusion MRI

    No full text
    This paper introduces an algorithm for reconstructing the brain's white matter fibers (WMFs). In particular, a fractional order mixture of central Wishart (FMoCW) model is proposed to reconstruct the WMFs from diffusion MRI data. The pseudo super diffusive modality of anomalous diffusion is coupled with the mixture of central Wishart (MoCW) model to derive the proposed model. We have shown results on multiple synthetic simulations, including fibers orientations in 2 and 3 directions per voxel and experiments on real datasets of rat optic chiasm and a healthy human brain. In synthetic simulations, a varying Rician distributed noise levels, σ=0.01−0.09 is also considered. The proposed model can efficiently distinguish multiple fibers even when the angle of separation between fibers is very small. This model outperformed, giving the least angular error when compared to fractional mixture of Gaussian (MoG), MoCW and mixture of non-central Wishart (MoNCW) models

    Convolutional Neural Network-Based Low-Powered Wearable Smart Device for Gait Abnormality Detection

    No full text
    Gait analysis is a powerful technique that detects and identifies foot disorders and walking irregularities, including pronation, supination, and unstable foot movements. Early detection can help prevent injuries, correct walking posture, and avoid the need for surgery or cortisone injections. Traditional gait analysis methods are expensive and only available in laboratory settings, but new wearable technologies such as AI and IoT-based devices, smart shoes, and insoles have the potential to make gait analysis more accessible, especially for people who cannot easily access specialized facilities. This research proposes a novel approach using IoT, edge computing, and tiny machine learning (TinyML) to predict gait patterns using a microcontroller-based device worn on a shoe. The device uses an inertial measurement unit (IMU) sensor and a TinyML model on an advanced RISC machines (ARM) chip to classify and predict abnormal gait patterns, providing a more accessible, cost-effective, and portable way to conduct gait analysis

    Deep Learning Algorithm for Satellite Imaging Based Cyclone Detection

    No full text
    Satellite images are primary data in weather prediction modeling. Deep learning-based approach, a viable candidate for automatic image processing, requires large sets of annotated data with diverse characteristics for training purposes. Accuracy of weather prediction improves with data having a relatively dense temporal resolution. We have employed interpolation and data augmentation techniques for enhancement of the temporal resolution and diversifications of characters in a given dataset. Algorithm requires classical approaches during preprocessing steps. Three optical flow methods using 14 different constraint optimization techniques and five error estimates are tested here. The artificially enriched data (optimal combination from the previous exercise) are used as a training set for a convolutional neural network to classify images in terms of storm or nonstorm. Several cyclone data (eight cyclone datasets of a different class) were used for training. A deep learning model is trained and tested with artificially densified and classified storm data for cyclone classification and locating the cyclone vortex giving minimum 90% and 84% accuracy, respectively. In the final step, we show that the linear regression method can be used for predicting the path

    An enhanced multi-fiber reconstruction technique using adaptive gradient directions coupled with MoNCW model in diffusion MRI

    No full text
    In this paper, we introduced a novel approach for generating unit gradient vectors named as adaptive gradient directions (AGD) for reconstructing single and decussating (crossing or kissing) white matter fibers in brain. The present study is focusing on reconstruction process of brain's white matter fibers but not dealing with data acquisition where scanning is performed. The gradient vectors used in the state-of-art methodologies for reconstruction are uniformly distributed vectors on a unit sphere but AGD, in contrary, are non-uniformly distributed points on a unit sphere. These points are uniformly distributed in some pattern on the surface of a unit sphere. For reconstruction, we have coupled the proposed AGD approach with mixture of non-central Wishart (MoNCW) model. We uphold the proposed approach with different simulations including synthetic as well as real data experiments. Resistivity to different Rician noise levels (σ=0.02-0.1) is demonstrated in simulated data for single as well as two and three decussating fibers. Our approach of using AGD dissipates the limitations that are encountered by the state-of-art technique of uniformly distributed points over the surface of unit sphere and outperforms showing significant reduction in angular errors
    corecore