269 research outputs found

    Utility of Biotechnology to Oil and Fats Industry

    Get PDF
    ABSTRACT Utility of the several techniques of modern biotechnology, including various approaches towards genetic modification, have allowed the development of several genetically modified (GM) crops. A lot of progress has been made in the area of plant breeding and modification of certain plant traits based on a fuller and better understanding of the plant genome. It is important in the present status and for the future potential of biotechnology to crop modification and its relation to oils and fats industry be assessed in terms of actual realities rather than those of wishful expectation. From the last three decades, variety of techniques have been introduced and developed for in genetic modification of plants. Acceptance of GM crops has not been universal. The technology for modifying the plant genome to produce consumer desirable products is available and is evolving. Concern among individual government and national consumers are having major impacts on further applications of these crop varieties and their global trade

    A Review on Electrical Behavior of Different Substrates, Electrodes and Membranes in Microbial Fuel Cell

    Get PDF
    The devices, which convert the energy in the form of electricity from organic matters, are called microbial fuel cell (MFC). Recently, MFCs have been given a lot of attention due to their mild operating conditions, and various types of biodegradable substrates have been used in the form of fuel. Traditional MFCs were included in anode and cathode chambers, but there are single chamber MFCs. Microorganisms actively catabolize substrate, and bioelectricities are produced. In the field of power generation from non-conventional sources, apart from the benefits of this technique, it is still facing practical constraints such as low potential and power. In this study, most suitable, natural, low cost MFCs components are electrodes (anode and cathode), organic substrates, membranes and its design is selected on the basis of maximum potential (voltage) as an electrical parameter, which indicates a vital role of affecting factor in MFC for sustainable power production

    Modulated structure in the martensite phase of Ni1.8Pt0.2MnGa: a neutron diffraction study

    Full text link
    7M orthorhombic modulated structure in the martensite phase of Ni1.8Pt0.2MnGa is reported by powder neutron diffraction study, which indicates that it is likely to exhibit magnetic field induced strain. The change in the unit cell volume is less than 0.5% between the austenite and martensite phases, as expected for a volume conserving martensite transformation. The magnetic structure analysis shows that the magnetic moment in the martensite phase is higher compared to Ni2MnGa, which is in good agreement with magnetization measurement

    RLIP76, a non-ABC transporter, and drug resistance in epilepsy

    Get PDF
    BACKGROUND: Permeability of the blood-brain barrier is one of the factors determining the bioavailability of therapeutic drugs and resistance to chemically different antiepileptic drugs is a consequence of decreased intracerebral accumulation. The ABC transporters, particularly P-glycoprotein, are known to play a role in antiepileptic drug extrusion, but are not by themselves sufficient to fully explain the phenomenon of drug-resistant epilepsy. Proteomic analyses of membrane protein differentially expressed in epileptic foci brain tissue revealed the frequently increased expression of RLIP76/RALBP1, a recently described non-ABC multi-specific transporter. Because of a significant overlap in substrates between P-glycoprotein and RLIP76, present studies were carried out to determine the potential role of RLIP76 in AED transport in the brain. RESULTS: RLIP76 was expressed in brain tissue, preferentially in the lumenal surface of endothelial cell membranes. The expression was most prominent in blood brain barrier tissue from excised epileptic foci. Saturable, energy-dependent, anti-gradient transport of both phenytoin and carbamazepine were demonstrated using recombinant RLIP76 reconstituted into artificial membrane liposomes. Immunotitration studies of transport activity in crude membrane vesicles prepared from whole-brain tissue endothelium showed that RLIP76 represented the dominant transport mechanism for both drugs. RLIP76(-/- )knockout mice exhibited dramatic toxicity upon phenytoin administration due to decreased drug extrusion mechanisms at the blood-brain barrier. CONCLUSION: We conclude that RLIP76 is the predominant transporter of AED in the blood brain barrier, and that it may be a transporter involved in mechanisms of drug-resistant epilepsy

    Theoretical prediction and experimental study of a ferromagnetic shape memory alloy: Ga_2MnNi

    Get PDF
    We predict the existence of a new ferromagnetic shape memory alloy Ga_2MnNi using density functional theory. The martensitic start temperature (T_M) is found to be approximately proportional to the stabilization energy of the martensitic phase (deltaE_tot) for different shape memory alloys. Experimental studies performed to verify the theoretical results show that Ga_2MnNi is ferromagnetic at room temperature and the T_M and T_C are 780K and 330K, respectively. Both from theory and experiment, the martensitic transition is found to be volume conserving that is indicative of shape memory behavior.Comment: 11 pages, 3 figure

    Synthesis of Silver Nanostructures and their Application in Highly Sensitive SERS Sensors

    Get PDF
    A comparison of Surface Enhanced Raman Scattering (SERS) activity of chemically synthesised silver nanostructures with different shapes is reported. The silver nanostructures of cubical, prism and wire like morphology were synthesised using chemical synthesis route and utilised as SERS substrates. The sensors were fabricated by spin coating these materials over a Silicon or glass substrate. The fabricated sensors were used to analyse response with two different analytes, 4-Mercaptobenzoic acid and Rhodamine 6G under different concentrations. The signal enhancement was compared with a silver coated thin film over glass substrate and it was observed that the enhancement of the order of 103 is achieved. The nanowire performed better than the other forms of silver and gave a higher signal enhancement for all the analytes as compared to other nanostructures. The fabricated sensors may be useful for various applications including explosive and biowarfare agent detection
    • …
    corecore