3 research outputs found
SN 2023ixf in Messier 101: Photo-ionization of Dense, Close-in Circumstellar Material in a Nearby Type II Supernova
We present UV/optical observations and models of supernova (SN) 2023ixf, a
type II SN located in Messier 101 at 6.9 Mpc. Early-time ("flash") spectroscopy
of SN 2023ixf, obtained primarily at Lick Observatory, reveals emission lines
of H I, He I/II, C IV, and N III/IV/V with a narrow core and broad, symmetric
wings arising from the photo-ionization of dense, close-in circumstellar
material (CSM) located around the progenitor star prior to shock breakout.
These electron-scattering broadened line profiles persist for 8 days with
respect to first light, at which time Doppler broadened features from the
fastest SN ejecta form, suggesting a reduction in CSM density at cm. The early-time light curve of SN2023ixf shows peak absolute
magnitudes (e.g., mag, mag) that are mag brighter than typical type II supernovae, this photometric boost also
being consistent with the shock power supplied from CSM interaction. Comparison
of SN 2023ixf to a grid of light curve and multi-epoch spectral models from the
non-LTE radiative transfer code CMFGEN and the radiation-hydrodynamics code
HERACLES suggests dense, solar-metallicity, CSM confined to cm and a progenitor mass-loss rate of
Myr. For the assumed progenitor wind velocity of km
s, this corresponds to enhanced mass-loss (i.e., ``super-wind'' phase)
during the last 3-6 years before explosion.Comment: 18 pages, 8 figures. Submitted to ApJ
SN 2023ixf in Messier 101: Photo-ionization of Dense, Close-in Circumstellar Material in a Nearby Type II Supernova
International audienceAbstract We present UV and/or optical observations and models of SN 2023ixf, a type II supernova (SN) located in Messier 101 at 6.9 Mpc. Early time ( flash ) spectroscopy of SN 2023ixf, obtained primarily at Lick Observatory, reveals emission lines of H i , He i/ii , C iv , and N iii/iv/v with a narrow core and broad, symmetric wings arising from the photoionization of dense, close-in circumstellar material (CSM) located around the progenitor star prior to shock breakout. These electron-scattering broadened line profiles persist for ∼8 days with respect to first light, at which time Doppler broadened the features from the fastest SN ejecta form, suggesting a reduction in CSM density at r ≳ 10 15 cm. The early time light curve of SN 2023ixf shows peak absolute magnitudes (e.g., M u = −18.6 mag, M g = −18.4 mag) that are ≳2 mag brighter than typical type II SNe, this photometric boost also being consistent with the shock power supplied from CSM interaction. Comparison of SN 2023ixf to a grid of light-curve and multiepoch spectral models from the non-LTE radiative transfer code CMFGEN and the radiation-hydrodynamics code HERACLES suggests dense, solar-metallicity CSM confined to r = (0.5–1) × 10 15 cm, and a progenitor mass-loss rate of M ̇ = 10 − 2 M ⊙ yr −1 . For the assumed progenitor wind velocity of v w = 50 km s −1 , this corresponds to enhanced mass loss (i.e., superwind phase) during the last ∼3–6 yr before explosion