388 research outputs found

    Prevention of Cross-update Privacy Leaks on Android

    Get PDF
    Updating applications is an important mechanism to enhance their availability, functionality, and security. However, without careful considerations, application updates can bring other security problems. In this paper, we consider a novel attack that exploits application updates on Android: a cross-update privacy-leak attack called COUPLE. The COUPLE attack allows an application to secretly leak sensitive data through the cross-update interaction between its old and new versions; each version only has permissions and logic for either data collection or transmission to evade detection. We implement a runtime security system, BREAKUP, that prevents cross-update sensitive data transactions by tracking permission-use histories of individual applications. Evaluation results show that BREAKUP’s time overhead is below 5%. We further show the feasibility of the COUPLE attack by analyzing the versions of 2,009 applications (28,682 APKs). © 2018, ComSIS Consortium. All rights reserved.11Ysciescopu

    Social Pressure-Induced Craving in Patients with Alcohol Dependence: Application of Virtual Reality to Coping Skill Training

    Get PDF
    OBJECTIVE: This study was conducted to assess the interaction between alcohol cues and social pressure in the induction of alcohol craving. METHODS: Fourteen male patients with alcohol dependence and 14 age-matched social drinkers completed a virtual reality coping skill training program composed of four blocks according to the presence of alcohol cues (x2) and social pressure (x2). Before and after each block, the craving levels were measured using a visual analogue scale. RESULTS: Patients with alcohol dependence reported extremely high levels of craving immediately upon exposure to a virtual environment with alcohol cues, regardless of social pressure. In contrast, the craving levels of social drinkers were influenced by social pressure from virtual avatars. CONCLUSION: Our findings imply that an alcohol cue-laden environment should interfere with the ability to use coping skills against social pressure in real-life situations.ope

    Low-Noise LLC Side-channel Attack with Perf

    No full text
    1

    Detecting Audio Adversarial Examples with Logit Noising

    No full text
    Automatic speech recognition (ASR) systems are vulnerable to audio adversarial examples that attempt to deceive ASR systems by adding perturbations to benign speech signals. Although an adversarial example and the original benign wave are indistinguishable to humans, the former is transcribed as a malicious target sentence by ASR systems. Several methods have been proposed to generate audio adversarial examples and feed them directly into the ASR system (over-line). Furthermore, many researchers have demonstrated the feasibility of robust physical audio adversarial examples (over-air). To defend against the attacks, several studies have been proposed. However, deploying them in a real-world situation is difficult because of accuracy drop or time overhead. In this paper, we propose a novel method to detect audio adversarial examples by adding noise to the logits before feeding them into the decoder of the ASR. We show that carefully selected noise can significantly impact the transcription results of the audio adversarial examples, whereas it has minimal impact on the transcription results of benign audio waves. Based on this characteristic, we detect audio adversarial examples by comparing the transcription altered by logit noising with its original transcription. The proposed method can be easily applied to ASR systems without any structural changes or additional training. The experimental results show that the proposed method is robust to over-line audio adversarial examples as well as over-air audio adversarial examples compared with state-of-the-art detection methods.1

    An Eco-Friendly Neutralization Process by Carbon Mineralization for Ca-Rich Alkaline Wastewater Generated from Concrete Sludge

    No full text
    Waste-concrete recycling processes using wet-based crushing methods inevitably generate a large amount of alkaline concrete sludge, as well as wastewater, which contains abundant Ca ions. The Ca-rich alkaline wastewater must then be neutralized for reuse in the waste-concrete recycling process. In this study, the feasibility of a carbon mineralization process for the neutralization of alkaline wastewater was considered from both environmental and economic perspectives. The optimal reaction time, efficiency of Ca removal and CO2 sequestration as a function of the CO2 gas flow rate were assessed. The carbon mineralization process resulted in sequestering CO2 (85–100% efficiency) and removing Ca from the solution (84–99%) by precipitating pure CaCO3. Increasing the gas flow rate reduced the reaction time (65.0 down to 3.4 min for 2.5 L of solution), but decreased CO2 sequestration (from 463.3 down to 7.3 mg CO2 for 2.5 L of solution). Optimization of the gas flow rate is essential for efficient CO2 sequestration, Ca removal, CaCO3 production and, therefore, successful wastewater neutralization following the wet-based crushing process. The method presented here is an eco-friendly and economically viable substitute for dealing with alkaline wastewater. It may also provide a practical guide for the design of carbon mineralization processes for the neutralization of alkaline solutions containing large amounts of Ca

    Unrestricted Black-Box Adversarial Attack Using GAN with Limited Queries

    No full text
    1

    Evaluation of the Applicability of Concrete Sludge for the Removal of Cu, Pb, and Zn from Contaminated Aqueous Solutions

    No full text
    In this study, the possibility of using concrete-sludge recycling as an immobilizer, including dried sludge (DS), precipitated calcium carbonate (PCC), and calcite-coated particles (CCP), was evaluated for the remediation of Cu-, Pb-, and Zn-contaminated aqueous solutions. Experimental variables characterizing immobilization, including reaction time, initial solution pH, and immobilizer dosage, were selected. After DS was applied, 98.3% of Cu, 99.9% of Pb, and 95.2% of Zn were removed via metal-hydroxide coprecipitation onto the surface of DS, which increased in pH within the shortened contact time. On the contrary, PCC and CCP removed metals (above 99.9% removal) via the formation of metal carbonates, which was highly dependent on both the pH and the carbonates released from the immobilizers. The acidic solution pH contributed to the dissolution of calcite (leading to an increase in carbonates in solution), thus enhancing the removal of metals. An increase in PCC and CCP dosage (liquid to solid ratio of 1000 to 100) was effective in removing Cu with an increasing final pH and number of carbonates in solution. Our results show that concrete sludge can be recycled to reduce environmental loads, including alkaline wastewater discharge, waste disposal, CO2 emissions, and metal-contaminated aqueous solutions
    corecore