1,040 research outputs found

    Byzantine Multiple Access Channels -- Part I: Reliable Communication

    Full text link
    We study communication over a Multiple Access Channel (MAC) where users can possibly be adversarial. The receiver is unaware of the identity of the adversarial users (if any). When all users are non-adversarial, we want their messages to be decoded reliably. When a user behaves adversarially, we require that the honest users' messages be decoded reliably. An adversarial user can mount an attack by sending any input into the channel rather than following the protocol. It turns out that the 22-user MAC capacity region follows from the point-to-point Arbitrarily Varying Channel (AVC) capacity. For the 33-user MAC in which at most one user may be malicious, we characterize the capacity region for deterministic codes and randomized codes (where each user shares an independent random secret key with the receiver). These results are then generalized for the kk-user MAC where the adversary may control all users in one out of a collection of given subsets.Comment: This supercedes Part I of arxiv:1904.1192

    Byzantine Multiple Access Channels -- Part II: Communication With Adversary Identification

    Full text link
    We introduce the problem of determining the identity of a byzantine user (internal adversary) in a communication system. We consider a two-user discrete memoryless multiple access channel where either user may deviate from the prescribed behaviour. Owing to the noisy nature of the channel, it may be overly restrictive to attempt to detect all deviations. In our formulation, we only require detecting deviations which impede the decoding of the non-deviating user's message. When neither user deviates, correct decoding is required. When one user deviates, the decoder must either output a pair of messages of which the message of the non-deviating user is correct or identify the deviating user. The users and the receiver do not share any randomness. The results include a characterization of the set of channels where communication is feasible, and an inner and outer bound on the capacity region. We also show that whenever the rate region has non-empty interior, the capacity region is same as the capacity region under randomized encoding, where each user shares independent randomness with the receiver. We also give an outer bound for this randomized coding capacity region.Comment: arXiv admin note: substantial text overlap with arXiv:2105.0338

    Differential Functional Constraints Cause Strain-Level Endemism in Polynucleobacter Populations.

    Get PDF
    The adaptation of bacterial lineages to local environmental conditions creates the potential for broader genotypic diversity within a species, which can enable a species to dominate across ecological gradients because of niche flexibility. The genus Polynucleobacter maintains both free-living and symbiotic ecotypes and maintains an apparently ubiquitous distribution in freshwater ecosystems. Subspecies-level resolution supplemented with metagenome-derived genotype analysis revealed that differential functional constraints, not geographic distance, produce and maintain strain-level genetic conservation in Polynucleobacter populations across three geographically proximal riverine environments. Genes associated with cofactor biosynthesis and one-carbon metabolism showed habitat specificity, and protein-coding genes of unknown function and membrane transport proteins were under positive selection across each habitat. Characterized by different median ratios of nonsynonymous to synonymous evolutionary changes (dN/dS ratios) and a limited but statistically significant negative correlation between the dN/dS ratio and codon usage bias between habitats, the free-living and core genotypes were observed to be evolving under strong purifying selection pressure. Highlighting the potential role of genetic adaptation to the local environment, the two-component system protein-coding genes were highly stable (dN/dS ratio, < 0.03). These results suggest that despite the impact of the habitat on genetic diversity, and hence niche partition, strong environmental selection pressure maintains a conserved core genome for Polynucleobacter populations. IMPORTANCE Understanding the biological factors influencing habitat-wide genetic endemism is important for explaining observed biogeographic patterns. Polynucleobacter is a genus of bacteria that seems to have found a way to colonize myriad freshwater ecosystems and by doing so has become one of the most abundant bacteria in these environments. We sequenced metagenomes from locations across the Chicago River system and assembled Polynucleobacter genomes from different sites and compared how the nucleotide composition, gene codon usage, and the ratio of synonymous (codes for the same amino acid) to nonsynonymous (codes for a different amino acid) mutations varied across these population genomes at each site. The environmental pressures at each site drove purifying selection for functional traits that maintained a streamlined core genome across the Chicago River Polynucleobacter population while allowing for site-specific genomic adaptation. These adaptations enable Polynucleobacter to become dominant across different riverine environmental gradients

    Facile fabrication of suspended as-grown carbon nanotube devices

    Full text link
    A simple scalable scheme is reported for fabricating suspended carbon nanotube field effect transistors (CNT-FETs) without exposing pristine as-grown carbon nanotubes to subsequent chemical processing. Versatility and ease of the technique is demonstrated by controlling the density of suspended nanotubes and reproducing devices multiple times on the same electrode set. Suspending the carbon nanotubes results in ambipolar transport behavior with negligible hysteresis. The Hooges constant of the suspended CNT-FETs (2.6 x 10-3) is about 20 times lower than for control CNT-FETs on SiO2 (5.6 x 10-2).Comment: 15 pages, 4 figure
    • …
    corecore