216 research outputs found

    Spectral broadening in self-assembled GaAs quantum dots with narrow size distribution

    Full text link
    The control over the spectral broadening of an ensemble of emitters, mainly attributable to the size and shape dispersion and the homogenous broadening mechanisms, is crucial to several applications of quantum dots. We present a convenient self-assembly approach to deliver strain-free GaAs quantum dots with size distribution below 15%, due to the control of the growth parameters during the preliminary formation of the Ga droplets. This results in an ensemble photoluminescence linewidth of 19 meV at 14 K. The narrow emission band and the absence of a wetting layer promoting dot-dot coupling allow us to deconvolve the contribution of phonon broadening in the ensemble photoluminescence and study it in a wide temperature range.Comment: 9 pages, 4 figure

    Optically controlled dual-band quantum dot infrared photodetector

    Full text link
    We present the design for a novel type of dual-band photodetector in the thermal infrared spectral range, the Optically Controlled Dual-band quantum dot Infrared Photodetector (OCDIP). This concept is based on a quantum dot ensemble with a unimodal size distribution, whose absorption spectrum can be controlled by optically-injected carriers. An external pumping laser varies the electron density in the QDs, permitting to control the available electronic transitions and thus the absorption spectrum. We grew a test sample which we studied by AFM and photoluminescence. Based on the experimental data, we simulated the infrared absorption spectrum of the sample, which showed two absorption bands at 5.85 um and 8.98 um depending on the excitation power

    Dynamics of mass transport during nanohole drilling by local droplet etching

    Get PDF
    Local droplet etching (LDE) utilizes metal droplets during molecular beam epitaxy for the self-assembled drilling of nanoholes into III/V semiconductor surfaces. An essential process during LDE is the removal of the deposited droplet material from its initial position during post-growth annealing. This paper studies the droplet material removal experimentally and discusses the results in terms of a simple model. The first set of experiments demonstrates that the droplet material is removed by detachment of atoms and spreading over the substrate surface. Further experiments establish that droplet etching requires a small arsenic background pressure to inhibit re-attachment of the detached atoms. Surfaces processed under completely minimized As pressure show no hole formation but instead a conservation of the initial droplets. Under consideration of these results, a simple kinetic scaling model of the etching process is proposed that quantitatively reproduces experimental data on the hole depth as a function of the process temperature and deposited amount of droplet material. Furthermore, the depth dependence of the hole side-facet angle is analyzed

    High-yield fabrication of entangled photon emitters for hybrid quantum networking using high-temperature droplet epitaxy

    Full text link
    Several semiconductor quantum dot techniques have been investigated for the generation of entangled photon pairs. Among the other techniques, droplet epitaxy enables the control of the shape, size, density, and emission wavelength of the quantum emitters. However, the fraction of the entanglement-ready quantum dots that can be fabricated with this method is still limited to around 5%, and matching the energy of the entangled photons to atomic transitions (a promising route towards quantum networking) remains an outstanding challenge. Here, we overcome these obstacles by introducing a modified approach to droplet epitaxy on a high symmetry (111)A substrate, where the fundamental crystallization step is performed at a significantly higher temperature as compared to previous reports. Our method drastically improves the yield of entanglement-ready photon sources near the emission wavelength of interest, which can be as high as 95% due to the low values of fine structure splitting and radiative lifetime, together with the reduced exciton dephasing offered by the choice of GaAs/AlGaAs materials. The quantum dots are designed to emit in the operating spectral region of Rb-based slow-light media, providing a viable technology for quantum repeater stations.Comment: 14 pages, 3 figure
    • …
    corecore