12 research outputs found

    Evaluation of cell disruption for partial isolation of intracellular pyruvate decarboxylase enzyme by silver nanoparticles method

    Get PDF
    Candida tropicalis TISTR 5350 was used in the comparison of seven concentration levels of silver nanoparticles (0, 5, 10, 15, 20, 25, and 30 μg ml–1) for cell disruption methods. The optimized cell disruption strategy was selected based on the optimal protein yield and biological activity. The maximum volumetric and specific pyruvate decarboxylase (PDC, EC 4.1.1.1) activities (0.53±0.05 U ml–1 and 0.17±0.02 U mg–1 protein, respectively) were observed at 15 μg ml–1 silver nanoparticles. The silver nanoparticle concentration level of 15 μg ml–1 was investigated further by comparing the reaction mixtures at different time intervals of 0, 1, 2, 3, 4, 5, and 6 min. The result showed that the highest specific PDC activity of 0.39±0.01 U mg–1 protein was obtained from mixing for 3 min. This was not significantly different (P≤0.05) from other mixing time intervals

    Polyhydroxyalkanoate-based natural-synthetic hybrid copolymer films: A small-angle neutron scattering study.

    No full text
    Polyhydroxyalkanoates have attracted attention as biodegradable alternatives to conventional thermoplastics and as biomaterials. Through modification of their biosynthesis using Pseudomonas oleovorans, we have manipulated the material properties of these biopolyesters and produced a natural-synthetic hybrid copolymer of polyhydroxyoctanoate-block-diethylene glycol (PHO-b-DEG). A mixture of PHO and PHO-DEG were solvent cast from analytical grade chloroform and analysed using small-angle neutron scattering. A scattering pattern, easily distinguished above the background, was displayed by the films with a diffraction ring at q similar to 0.12 angstrom(-1). This narrow ring of intensity is suggestive of a highly ordered system. Analysis of the diffraction pattern supported this concept and showed a d-spacing of approximately 50 angstrom. In addition, conformation of the hybrid polymer chains can be manipulated to support their self-assembly into ordered microporous films. Polyhydroxyalkanoates have attracted attention as biodegradable alternatives to conventional thermoplastics and as biomaterials. Through modification of their biosynthesis using Pseudomonas oleovorans, we have manipulated the material properties of these biopolyesters and produced a natural-synthetic hybrid copolymer of polyhydroxyoctanoate-block-diethylene glycol (PHO-b-DEG). A mixture of PHO and PHO-DEG were solvent cast from analytical grade chloroform and analysed using small-angle neutron scattering. A scattering pattern, easily distinguished above the background, was displayed by the films with a diffraction ring at q similar to 0.12 angstrom(-1). This narrow ring of intensity is suggestive of a highly ordered system. Analysis of the diffraction pattern supported this concept and showed a d-spacing of approximately 50 angstrom. In addition, conformation of the hybrid polymer chains can be manipulated to support their self-assembly into ordered microporous films. Polyhydroxyalkanoates have attracted attention as biodegradable alternatives to conventional thermoplastics and as biomaterials. Through modification of their biosynthesis using Pseudomonas oleovorans, we have manipulated the material properties of these biopolyesters and produced a natural-synthetic hybrid copolymer of polyhydroxyoctanoate-block-diethylene glycol (PHO-b-DEG). A mixture of PHO and PHO-DEG were solvent cast from analytical grade chloroform and analysed using small-angle neutron scattering. A scattering pattern, easily distinguished above the background, was displayed by the films with a diffraction ring at q similar to 0.12 angstrom(-1). This narrow ring of intensity is suggestive of a highly ordered system. Analysis of the diffraction pattern supported this concept and showed a d-spacing of approximately 50 angstrom. In addition, conformation of the hybrid polymer chains can be manipulated to support their self-assembly into ordered microporous films. © 2006, Elsevier Ltd

    Biosynthesis and characterization of deuterated polyhydroxyoctanoate.

    No full text
    The synthesis of a polyhydroxyalkanoate with medium chain length alkyl substituents by Pseudomonas oleovorans was investigated using protonated and deuterated forms of octanoic acid in a minimal salts medium. Cultivation with deuterated octanoic acid resulted in a reduced rate of polymer accumulation compared to that with its protonated counterpart (107 and 207 mg of polymer L-1 of medium h-1 of cultivation, respectively). Nuclear magnetic resonance and gas chromatography coupled mass spectrometry of the derivatized polymer was used to establish the extent and distribution of deuterium in the biopolymer. A partially deuterated heteropolymer with 3-hydroxyoctanoic acid as the main constituent was produced. Deuteration is an important tool for contrast variation studies using neutron scattering, but predicates that the deuterated polymer is otherwise comparable in its physiochemical and material properties to its protonated counterpart. In studies reported here, the deuterated biopolymer exhibited an additional diffraction maximum at 7.55 Å and slight differences in its melting point (60 and 55 °C) and glass transition temperature (−39 and −36 °C) when compared to its protonated equivalent. While significant differences between the protonated and deuterated biopolymers were determined, our results support the use of this deuterated polyhydroxyalkanoate in its application in investigations using analytical neutron scattering techniques. © 2006, American Chemical Societ

    Enzymatic hydrolysis of cassava stems for butanol production of isolated Clostridium sp.

    No full text
    This research focused on the hydrolysis of cassava stems (CS) and subsequent utilization as a carbon source for the cultivation of isolated Clostridium sp. To yield the highest amount of reducing sugars (RS), the studies on the pretreatment with sodium hydroxide (NaOH) and the hydrolysis with cellulases, amylases, and mixed enzymes were carried out. Afterwards, the hydrolysate was utilized for the cultivation of isolated Clostridium sp. Experimental results revealed that CS after 1.0 M NaOH pretreatment at 121 °C for 15 min and cellulase hydrolysis (Accellerase® 1500, 2500 CMC U/g CS) obtained 10.94 ± 0.29 g/L RS concentration. Hydrolysis of CS with amylases (Termamyl® 120, 1.2 U/g CS and AMG 300L™ 3.5 U/g CS) provided 34.85 ± 0.75 g/L RS and the maximum RS amount of 47.90 ± 0.39 g/L was obtained from the hydrolysis with mixed enzymes (Termamyl® 120, 1.2 U/g CS, AMG 300L™ 3.5 U/g CS followed by Accellerase® 1500, 2500 CMC U/g CS). From the cultivation of Clostridium sp. G10 using CS hydrolysate, the highest dry cell weight concentration of 1.28 ± 0.07 g/L was obtained with 11.68 ± 0.31 g/L butanol. It could be concluded that CS hydrolysate was comparable with glucose for utilization as a carbon source for butanol production
    corecore