69 research outputs found

    Endogenous expression of FAD-linked PS1 impairs proliferation, neuronal differentiation and survival of adult hippocampal progenitors

    Get PDF
    BACKGROUND: Alzheimer’s disease (AD) is characterized by progressive memory loss and impaired cognitive function. Early-onset familial forms of the disease (FAD) are caused by inheritance of mutant genes encoding presenilin 1 (PS1) variants. We have demonstrated that prion promoter (PrP)-driven expression of human FAD-linked PS1 variants in mice leads to impairments in environmental enrichment (EE)-induced adult hippocampal neural progenitor cell (AHNPC) proliferation and neuronal differentiation, and have provided evidence that accessory cells in the hippocampal niche expressing PS1 variants may modulate AHNPC phenotypes, in vivo. While of significant interest, these latter studies relied on transgenic mice that express human PS1 variant transgenes ubiquitously and at high levels, and the consequences of wild type or mutant PS1 expressed under physiologically relevant levels on EE-mediated AHNPC phenotypes has not yet been tested. RESULTS: To assess the impact of mutant PS1 on EE-induced AHNPC phenotypes when expressed under physiological levels, we exposed adult mice that constitutively express the PSEN1 M146V mutation driven by the endogenous PSEN1 promoter (PS1 M146V “knock-in” (KI) mice) to standard or EE-housed conditions. We show that in comparison to wild type PS1 mice, AHNPCs in mice carrying homozygous (PS1(M146V/M146V)) or heterozygous (PS1(M146V/+)) M146V mutant alleles fail to exhibit EE-induced proliferation and commitment towards neurogenic lineages. More importantly, we report that the survival of newborn progenitors are diminished in PS1 M146V KI mice exposed to EE-conditions compared to respective EE wild type controls. CONCLUSIONS: Our findings reveal that expression at physiological levels achieved by a single PS1 M146V allele is sufficient to impair EE-induced AHNPC proliferation, survival and neuronal differentiation, in vivo. These results and our finding that microglia expressing a single PS1 M146V allele impairs the proliferation of wild type AHNPCs in vitro argue that expression of mutant PS1 in the AHNPC niche impairs AHNPCs phenotypes in a dominant, non-cell autonomous manner

    Regulation of hippocampal progenitor cell survival, proliferation and dendritic development by BDNF

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Environmental enrichment (EE) is known to enhance BDNF levels and neurogenesis in the adult hippocampus. To examine the role of BDNF in modulating EE-mediated adult hippocampal neurogenesis, we conditionally ablated <it>BDNF </it>expression in the hippocampus (cKO mice) and have assessed proliferation, survival, differentiation and dendritic development of hippocampal progenitors.</p> <p>Results</p> <p>We show that while the extent of cell proliferation and neuronal fate differentiation in the hippocampus of cKO mice is not different from wild-type (WT) littermates maintained in either standard or enriched conditions, reduced BDNF levels significantly impaired the survival of newborn cells in both housing conditions. In addition, while highly active enriched WT mice exhibited a robust increase in progenitor cell proliferation, highly active cKO mice showed a modest increase in cell proliferation compared to standard housed or underactive cKO mice.</p> <p>Conclusions</p> <p>There results argue that while BDNF plays a role in exercise-induced cell proliferation, other factors must contribute to this phenomenon. We also show that dendritic development was impaired in cKO mice maintained in standard housing conditions, and that EE rescued this phenotype.</p

    Biogenesis of γ-secretase early in the secretory pathway

    Get PDF
    γ-Secretase is responsible for proteolytic maturation of signaling and cell surface proteins, including amyloid precursor protein (APP). Abnormal processing of APP by γ-secretase produces a fragment, Aβ42, that may be responsible for Alzheimer's disease (AD). The biogenesis and trafficking of this important enzyme in relation to aberrant Aβ processing is not well defined. Using a cell-free reaction to monitor the exit of cargo proteins from the endoplasmic reticulum (ER), we have isolated a transient intermediate of γ-secretase. Here, we provide direct evidence that the γ-secretase complex is formed in an inactive complex at or before the assembly of an ER transport vesicle dependent on the COPII sorting subunit, Sec24A. Maturation of the holoenzyme is achieved in a subsequent compartment. Two familial AD (FAD)–linked PS1 variants are inefficiently packaged into transport vesicles generated from the ER. Our results suggest that aberrant trafficking of PS1 may contribute to disease pathology

    Molecular signatures of neurodegeneration in the cortex of PS1/PS2 double knockout mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Familial Alzheimer's disease-linked variants of presenilin (PSEN1 and PSEN2) contribute to the pathophysiology of disease by both gain-of-function and loss-of-function mechanisms. Deletions of <it>PSEN1 </it>and <it>PSEN2 </it>in the mouse forebrain result in a strong and progressive neurodegenerative phenotype which is characterized by both anatomical and behavioral changes.</p> <p>Results</p> <p>To better understand the molecular changes associated with these morphological and behavioral phenotypes, we performed a DNA microarray transcriptome profiling of the hippocampus and the frontal cortex of the <it>PSEN1/PSEN2 </it>double knock-out mice and littermate controls at five different ages ranging from 2–8 months. Our data suggest that combined deficiencies of <it>PSEN1 </it>and <it>PSEN2 </it>results in a progressive, age-dependent transcriptome signature related to neurodegeneration and neuroinflammation. While these events may progress differently in the hippocampus and frontal cortex, the most critical expression signatures are common across the two brain regions, and involve a strong upregulation of <it>cathepsin </it>and <it>complement </it>system transcripts.</p> <p>Conclusion</p> <p>The observed neuroinflammatory expression changes are likely to be causally linked to the neurodegenerative phenotype observed in mice with compound deletions of <it>PSEN1 </it>and <it>PSEN2</it>. Furthermore, our results suggest that the evaluation of inhibitors of PS/γ-secretase activity for treatment of Alzheimer's Disease must include close monitoring for signs of calpain-cathepsin system activation.</p

    Plug-Based Microfluidics with Defined Surface Chemistry to Miniaturize and Control Aggregation of Amyloidogenic Peptides

    Get PDF
    Small with control: For miniaturization of protein aggregation experiments the interfacial chemistry must be controlled to avoid protein aggregation caused by interfacial adsorption. Plug-based microfluidics with defined surface chemistry (see schematic picture) can then be used to perform hundreds of aggregation experiments with volume-limited samples, such as cerebrospinal fluid from mice

    Sex-specific effects of microbiome perturbations on cerebral Aβ amyloidosis and microglia phenotypes.

    Get PDF
    We demonstrated that an antibiotic cocktail (ABX)-perturbed gut microbiome is associated with reduced amyloid-β (Aβ) plaque pathology and astrogliosis in the male amyloid precursor protein (APP)SWE /presenilin 1 (PS1)ΔE9 transgenic model of Aβ amyloidosis. We now show that in an independent, aggressive APPSWE/PS1L166P (APPPS1-21) mouse model of Aβ amyloidosis, an ABX-perturbed gut microbiome is associated with a reduction in Aβ pathology and alterations in microglial morphology, thus establishing the generality of the phenomenon. Most importantly, these latter alterations occur only in brains of male mice, not in the brains of female mice. Furthermore, ABX treatment lead to alterations in levels of selected microglial expressed transcripts indicative of the "M0" homeostatic state in male but not in female mice. Finally, we found that transplants of fecal microbiota from age-matched APPPS1-21 male mice into ABX-treated APPPS1-21 male restores the gut microbiome and partially restores Aβ pathology and microglial morphology, thus demonstrating a causal role of the microbiome in the modulation of Aβ amyloidosis and microglial physiology in mouse models of Aβ amyloidosis

    Protein Topology of Presenilin 1

    Get PDF
    AbstractMutations in a gene encoding a multitransmembrane protein, termed presenilin 1 (PS1), are causative in the majority of early-onset cases of AD. To determine the topology of PS1, we utilized two strategies: first, we tested whether putative transmembranes are sufficient to export a protease-sensitive substrate across a lipid bilayer; and second, we examined the binding of antibodies to specific PS1 epitopes in cultured cells selectively permeabilized with the pore-forming toxin, streptolysin-O. We document that the “loop,” N-terminal, and C-terminal domains of PS1 are oriented toward the cytoplasm

    Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease

    Get PDF
    Severe amyloidosis and plaque-localized neuro-inflammation are key pathological features of Alzheimer’s disease (AD). In addition to astrocyte and microglial reactivity, emerging evidence suggests a role of gut microbiota in regulating innate immunity and influencing brain function. Here, we examine the role of the host microbiome in regulating amyloidosis in the APP(SWE)/PS1(ΔE9) mouse model of AD. We show that prolonged shifts in gut microbial composition and diversity induced by long-term broad-spectrum combinatorial antibiotic treatment regime decreases Aβ plaque deposition. We also show that levels of soluble Aβ are elevated and that levels of circulating cytokine and chemokine signatures are altered in this setting. Finally, we observe attenuated plaque-localised glial reactivity in these mice and significantly altered microglial morphology. These findings suggest the gut microbiota community diversity can regulate host innate immunity mechanisms that impact Aβ amyloidosis

    Modulation of γ-Secretase Reduces β-Amyloid Deposition in a Transgenic Mouse Model of Alzheimer's Disease

    Get PDF
    SummaryAlzheimer's disease (AD) is characterized pathologically by the abundance of senile plaques and neurofibrillary tangles in the brain. We synthesized over 1200 novel gamma-secretase modulator (GSM) compounds that reduced Aβ42 levels without inhibiting epsilon-site cleavage of APP and Notch, the generation of the APP and Notch intracellular domains, respectively. These compounds also reduced Aβ40 levels while concomitantly elevating levels of Aβ38 and Aβ37. Immobilization of a potent GSM onto an agarose matrix quantitatively recovered Pen-2 and to a lesser degree PS-1 NTFs from cellular extracts. Moreover, oral administration (once daily) of another potent GSM to Tg 2576 transgenic AD mice displayed dose-responsive lowering of plasma and brain Aβ42; chronic daily administration led to significant reductions in both diffuse and neuritic plaques. These effects were observed in the absence of Notch-related changes (e.g., intestinal proliferation of goblet cells), which are commonly associated with repeated exposure to functional gamma-secretase inhibitors (GSIs)
    corecore