4 research outputs found

    Hybrid Genetic Algorithm and Kalman Filter Approach to Estimate the Clamping Force of Electro-Mechanical Brake

    Get PDF
    In thispaper, a hybrid genetic algorithm (GA) and Kalman filter approach to combining motor encoder and current sensor models is presented to accurate estimate the clamping force of an electro-mechanical brake (EMB). Elimination of the clamping force sensor and measurement cables results in lower cost and increased reliability of an EMB system, including its electric motor.A Kalman filter is a special kind of observer that provides optimal filtering of the measurement noise and inside the system if the covariances of these noises are known. The proposed combined estimator is based on Kalman filter optimized by GA in which the motor encoder is used in a dynamic stiffness model and the motor current sensor is used to give measurement updates in a torque balance model. A real-coded GA is used to optimize the noise matrices and improve the performance of the Kalman filter. Experimental results show that, by using the proposed estimator, the virtual clamping force sensor can handle highly dynamic situations, making it suitable for possible use in sensorless fault-tolerant control. It is shown that the proposed combined estimator improves the root mean square error (RMSE) performance. The developed estimator can be used in real vehicle environments because it can adapt to parameter variations

    Robust Clamping Force Control of an Electro-Mechanical Brake System for Application to Commercial City Buses

    No full text
    This paper proposes a sensor-less robust force control method for improving the control performance of an electro-mechanical brake (EMB) which is applicable to commercial city buses. The EMB generates the accurate clamping force commanded by a driver through an independent motor control at each wheel instead of using existing mechanical components. In general, an EMB undergoes parameter variation and a backdrivability problem. For this reason, the cascade control strategy (e.g., force-position cascade control structure) is proposed and the disturbance observer is employed to enhance control robustness against model variations. Additionally, this paper proposed the clamping force estimation method for a sensor-less control, i.e., the clamping force observer (CFO). Finally, in order to confirm the performance and effectiveness of a proposed robust control method, several experiments are performed and analyzed

    Kalman-Filter-Based Tension Control Design for Industrial Roll-to-Roll System

    No full text
    This paper presents a robust and precise tension control method for a roll-to-roll (R2R) system. In R2R processing, robust and precise tension control is very important because improper web tension control leads to deterioration in the quality of web material. However, tension control is not easy because the R2R system has a model variation in which the inertia of the web in roll form is changed and external disturbances caused by web slip and crumpled web. Therefore, a disturbance observer (DOB) was proposed to achieve robustness against model variations and external disturbances. DOB is a robust control method widely used in various fields because of its simple structure and excellent performance. Moreover, the web passes through various process steps to achieve the finished product in the R2R process. Particularly, it is important to track the tension when magnitude of the tension varies during process. Feedforward (FF) controller was applied to minimize the tracking error in the transient section where tension changes. Moreover, the signal processing of a sensor using the Kalman filter (KF) in the R2R system greatly improved control performance. Finally, the effectiveness of the proposed control scheme is discussed using experimental results
    corecore