1,098 research outputs found

    Electron-phonon Interaction close to a Mott transition

    Full text link
    The effect of Holstein electron-phonon interaction on a Hubbard model close to a Mott-Hubbard transition at half-filling is investigated by means of Dynamical Mean-Field Theory. We observe a reduction of the effective mass that we interpret in terms of a reduced effective repulsion. When the repulsion is rescaled to take into account this effect, the quasiparticle low-energy features are unaffected by the electron-phonon interaction. Phonon features are only observed within the high-energy Hubbard bands. The lack of electron-phonon fingerprints in the quasiparticle physics can be explained interpreting the quasiparticle motion in terms of rare fast processes.Comment: 4 pages, 3 color figures. Slightly revised text and references. Kondo effect result added in Fig. 2 for comparison with DMFT dat

    Phase Separation close to the density-driven Mott transition in the Hubbard-Holstein model

    Full text link
    The density driven Mott transition is studied by means of Dynamical Mean-Field Theory in the Hubbard-Holstein model, where the Hubbard term leading to the Mott transition is supplemented by an electron-phonon (e-ph) term. We show that an intermediate e-ph coupling leads to a first-order transition at T=0, which is accompanied by phase separation between a metal and an insulator. The compressibility in the metallic phase is substantially enhanced. At quite larger values of the coupling a polaronic phase emerges coexisting with a non-polaronic metal.Comment: 4 pages, 3 figures. Slightly revised text. More details in Fig.1 and 2. Smaller size version of Fig.

    Electron-phonon interaction and antiferromagnetic correlations

    Get PDF
    We study effects of the Coulomb repulsion on the electron-phonon interaction (EPI) in a model of cuprates at zero and finite doping. We find that antiferromagnetic correlations strongly enhance EPI effects on the electron Green's function with respect to the paramagnetic correlated system, but the net effect of the Coulomb interaction is a moderate suppression of the EPI. Doping leads to additional suppression, due to reduced antiferromagnetic correlations. In contrast, the Coulomb interaction strongly suppresses EPI effects on phonons, but the suppression weakens with doping.Comment: 4 pages and 5 figure

    Doping-driven transition to a time-reversal breaking state in the phase diagram of the cuprates

    Full text link
    Motivated by recent tunnelling and Andreev-reflection experiments, we study the conditions for a quantum transition within the superconducting phase of the cuprates,in which a bulk imaginary (time-reversal breaking) idxyid_{xy}component appears in addition to the dx2−y2d_{x^2 - y^2} order parameter. We examine in detail the role of some important physical features of the cuprates.In particular we show that a closed Fermi surface,a bilayer splitting, an orthorhombic distortion,and the proximity to a quantum critical point around optimal doping favor the appearance of the imaginary component. These findings could explain why the mixed dx2−y2+idxyd_{x^2 - y^2}+ id_{xy} order parameter is observed in YBCO and LSCO, and suggest that it could appear also in Bi2212. We also predict that, in all cuprates, the mixed state should be stable only in a limited doping region all contained beneath the dx2−y2d_{x^2 - y^2} dome. The behavior of the specific heat at the secondary transition is discussed.Comment: 8 pages, 3 figures. Expanded text, 1 extra figur
    • …
    corecore