953 research outputs found

    How Team-Level and Individual-Level Conflict Influences Team Commitment: A Multilevel Investigation

    Get PDF
    We investigate how two different types of conflict (task conflict and relationship conflict) at two different levels (individual-level and team-level) influence individual team commitment. The analysis was conducted using data we collected from 193 employees in 31 branch offices of a Korean commercial bank. The relationships at multiple levels were tested using hierarchical linear modeling (HLM). The results showed that individual-level relationship conflict was negatively related to team commitment while individual-level task conflict was not. In addition, both team-level task and relationship conflict were negatively associated with team commitment. Finally, only team-level relationship conflict significantly moderated the relationship between individual-level relationship conflict and team commitment. We further derive theoretical implications of these findings

    Safe and Efficient Trajectory Optimization for Autonomous Vehicles using B-spline with Incremental Path Flattening

    Full text link
    B-spline-based trajectory optimization is widely used for robot navigation due to its computational efficiency and convex-hull property (ensures dynamic feasibility), especially as quadrotors, which have circular body shapes (enable efficient movement) and freedom to move each axis (enables convex-hull property utilization). However, using the B-spline curve for trajectory optimization is challenging for autonomous vehicles (AVs) because of their vehicle kinodynamics (rectangular body shapes and constraints to move each axis). In this study, we propose a novel trajectory optimization approach for AVs to circumvent this difficulty using an incremental path flattening (IPF), a disc type swept volume (SV) estimation method, and kinodynamic feasibility constraints. IPF is a new method that can find a collision-free path for AVs by flattening path and reducing SV using iteratively increasing curvature penalty around vehicle collision points. Additionally, we develop a disc type SV estimation method to reduce SV over-approximation and enable AVs to pass through a narrow corridor efficiently. Furthermore, a clamped B-spline curvature constraint, which simplifies a B-spline curvature constraint, is added to dynamical feasibility constraints (e.g., velocity and acceleration) for obtaining the kinodynamic feasibility constraints. Our experimental results demonstrate that our method outperforms state-of-the-art baselines in various simulated environments. We also conducted a real-world experiment using an AV, and our results validate the simulated tracking performance of the proposed approach.Comment: 14 pages, 21 figures, 4 tables, 3 algorithm

    Deterministic bead-in-droplet ejection utilizing an integrated plug-in bead dispenser for single bead-based applications

    Get PDF
    This paper presents a deterministic bead-in-droplet ejection (BIDE) technique that regulates the precise distribution of microbeads in an ejected droplet. The deterministic BIDE was realized through the effective integration of a microfluidic single-particle handling technique with a liquid dispensing system. The integrated bead dispenser facilitates the transfer of the desired number of beads into a dispensing volume and the on-demand ejection of bead-encapsulated droplets. Single bead-encapsulated droplets were ejected every 3 s without any failure. Multiple-bead dispensing with deterministic control of the number of beads was demonstrated to emphasize the originality and quality of the proposed dispensing technique. The dispenser was mounted using a plug-socket type connection, and the dispensing process was completely automated using a programmed sequence without any microscopic observation. To demonstrate a potential application of the technique, bead-based streptavidin-biotin binding assay in an evaporating droplet was conducted using ultralow numbers of beads. The results evidenced the number of beads in the droplet crucially influences the reliability of the assay. Therefore, the proposed deterministic bead-in-droplet technology can be utilized to deliver desired beads onto a reaction site, particularly to reliably and efficiently enrich and detect target biomolecules.112Ysciescopu

    Optimizing Semi-Analytical Algorithms for Estimating Chlorophyll-a and Phycocyanin Concentrations in Inland Waters in Korea

    Get PDF
    Several semi-analytical algorithms have been developed to estimate the chlorophyll-a (Chl-a) and phycocyanin (PC) concentrations in inland waters. This study aimed at identifying the influence of algorithm parameters on the output variables and searching optimal parameter values. The optimal parameters of seven semi-analytical algorithms were applied to estimate the Chl-a and PC concentrations. The absorption coefficient measurements were coupled with pigment measurements to calibrate the algorithm parameters. For sensitivity analysis, the elementary effect test was conducted to analyze the influence of the algorithm parameters. The sensitivity analysis results showed that the parameters in the Y function and specific absorption coefficient were the most sensitive parameters. Then, the parameters were optimized via a single-objective optimization that involved one objective function being minimized and a multi-objective optimization that contained more than one objective function. The single-objective optimization led to substantial errors in absorption coefficients. In contrast, the multi-objective optimization improved the algorithm performance with respect to both the absorption coefficient estimates and pigment concentration estimates. The optimized parameters of the absorption coefficient reflected the high-particulate content in waters of the Baekje reservoir using an infrared backscattering wavelength and relatively high value of Y. Moreover, the results indicate the value of measuring the site-specific absorption if site-specific optimization of semi-analyical algorithm parameters was envisioned

    Quantitative local probing of polarization with application on HfO 2 ‐based thin films

    Get PDF
    Owing to their switchable spontaneous polarization, ferroelectric materials have been applied in various fields, such as information technologies, actuators, and sensors. In the last decade, as the characteristic sizes of both devices and materials have decreased significantly below the nanoscale, the development of appropriate characterization tools became essential. Recently, a technique based on conductive atomic force microscopy (AFM), called AFM‐positive‐up‐negative‐down (PUND), is employed for the direct measurement of ferroelectric polarization under the AFM tip. However, the main limitation of AFM‐PUND is the low frequency (i.e., on the order of a few hertz) that is used to initiate ferroelectric hysteresis. A significantly higher frequency is required to increase the signal‐to‐noise ratio and the measurement efficiency. In this study, a novel method based on high‐frequency AFM‐PUND using continuous waveform and simultaneous signal acquisition of the switching current is presented, in which polarization–voltage hysteresis loops are obtained on a high‐polarization BiFeO3 nanocapacitor at frequencies up to 100 kHz. The proposed method is comprehensively evaluated by measuring nanoscale polarization values of the emerging ferroelectric Hf0.5Zr0.5O2 under the AFM tip

    A pathogen-derived metabolite induces microglial activation via odorant receptors

    Get PDF
    Microglia (MG), the principal neuroimmune sentinels in the brain, continuously sense changes in their environment and respond to invading pathogens, toxins, and cellular debris, thereby affecting neuroinflammation. Microbial pathogens produce small metabolites that influence neuroinflammation, but the molecular mechanisms that determine whether pathogen-derived small metabolites affect microglial activation of neuroinflammation remain to be elucidated. We hypothesized that odorant receptors (ORs), the largest subfamily of G protein-coupled receptors, are involved in microglial activation by pathogen-derived small metabolites. We found that MG express high levels of two mouse ORs, Olfr110 and Olfr111, which recognize a pathogenic metabolite, 2-pentylfuran, secreted by Streptococcus pneumoniae. These interactions activate MG to engage in chemotaxis, cytokine production, phagocytosis, and reactive oxygen species generation. These effects were mediated through the G(alpha s)-cyclic adenosine monophosphate-protein kinase A-extracellular signal-regulated kinase and G(beta gamma)-phospholipase C-Ca2+ pathways. Taken together, our results reveal a novel interplay between the pathogen-derived metabolite and ORs, which has major implications for our understanding of microglial activation by pathogen recognition. Database Model data are available in the PMDB database under the accession number PM0082389.N
    corecore