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Abstract: Several semi-analytical algorithms have been developed to estimate the chlorophyll-a
(Chl-a) and phycocyanin (PC) concentrations in inland waters. This study aimed at identifying
the influence of algorithm parameters on the output variables and searching optimal parameter
values. The optimal parameters of seven semi-analytical algorithms were applied to estimate
the Chl-a and PC concentrations. The absorption coefficient measurements were coupled with
pigment measurements to calibrate the algorithm parameters. For sensitivity analysis, the elementary
effect test was conducted to analyze the influence of the algorithm parameters. The sensitivity
analysis results showed that the parameters in the Y function and specific absorption coefficient
were the most sensitive parameters. Then, the parameters were optimized via a single-objective
optimization that involved one objective function being minimized and a multi-objective optimization
that contained more than one objective function. The single-objective optimization led to substantial
errors in absorption coefficients. In contrast, the multi-objective optimization improved the algorithm
performance with respect to both the absorption coefficient estimates and pigment concentration
estimates. The optimized parameters of the absorption coefficient reflected the high-particulate
content in waters of the Baekje reservoir using an infrared backscattering wavelength and relatively
high value of Y. Moreover, the results indicate the value of measuring the site-specific absorption if
site-specific optimization of semi-analyical algorithm parameters was envisioned.

Keywords: chlorophyll-a; phycocoyanin; semi-analytical algorithm; sensitivity analysis; multi-objective
optimization

1. Introduction

Harmful algal blooms (HABs) create formidable problems for freshwater aquatic ecosystems
and human health. HABs cause the depletion of dissolved oxygen, resulting in the death of aquatic
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animals and toxin production [1]. To address these problems, it is essential to understand the spatial
and temporal distributions of HABs and the effects of the blooms on aquatic ecosystems. Essentially,
the implementation of effective monitoring strategies is required to identify HABs.

Remote sensing techniques are utilized to detect HABs and quantify an algal biomass using the
chlorophyll-a (Chl-a) concentration, which is an indicator of a phytoplankton biomass [2,3], and the
phycocyanin (PC) concentration, which is an accessory pigment of cyanobacteria [4]. In inland waters,
several algorithms are applied to estimate the Chl-a concentration [5–13] and PC concentration [13–15].
However, these algorithms have limitations due to the variation of optical properties among water
systems [16]. To account for this variation, the absorption coefficient as an inherent optical property
(IOP) is included in equations to estimate the concentrations of Chl-a and PC. The absorption coefficient
effectively accounts for the properties of the particulate and dissolved organic matter in the water.

Semi-analytical bio-optical algorithms have been developed for estimating Chl-a and PC
concentrations in inland waters. These algorithms were modified for different inland waters because
of the differences in their optical properties. In general, inland waters appeared to be optically
complex due to a wide variability in the concentrations of pigments, suspended sediments, and
colored dissolved organic matter [17]. The variation in the absorption coefficient was recognized as a
consequence of such complexity. To account for this optical complexity, the absorption coefficient was
included in the semi-analytical algorithms.

The measured absorption coefficient was used to improve the performance of the algorithms [9].
Given the absorption coefficients, the algorithm’s performance could be evaluated by its ability to
estimate both biomass concentrations and absorption coefficients. However, sensitivity analysis
of the semi-analytical algorithm parameters has rarely been implemented [9]. It is very important
to understand how the uncertainty in estimation of both biomass concentrations and absorption
coefficients can be attributed to different sources of uncertainty in its parameters.

The optimization of the semi-analytical algorithm’s parameters was required because of
the site-specific properties of waters. However, parameter optimization in the semi-analytical
algorithms in inland waters relied on the algorithms performance to estimate the Chl-a and PC
concentrations [5,6,13,14]. The absorption coefficient has been previously estimated [9,14] and used to
compute pigment concentration without site-specific changes in the semi-analytical algorithms.

Therefore, the objectives of this study were to (1) identify the influences of semi-analytical
algorithm parameters on the estimation of both absorption coefficient and pigment concentration;
(2) calibrate the algorithm’s parameters using single- and multi-objective optimization methods; and
(3) assess the effect of measured absorption coefficients in multi-objective parameter optimization for
semi-analytical algorithms on the accuracy of those algorithms.

2. Materials and Methods

2.1. Study Site

The Baekje reservoir (36◦32′N 126◦94′E) is located in the main stream of the Geum River (Figure 1).
The Geum River is one of the largest rivers in Korea and contains the Sejong, Gongju, and Baekje
reservoirs. The average depth of the Baekje reservoir is 4 m. The length of the reservoir is 23 km.
Drinking water, agriculture water, and electricity have been supplied from the Baekje reservoir [18].

Algal blooms frequently occurred in the Baekje reservoir due to an increase in the water retention
time, nutrient loads from the tributary in urban areas, and climate change [18]. In addition, the algal
blooms in the Baekje reservoir were the cyanobacteria-dominant blooms that were harmful to human
health and aquatic life due to the production of cyanotoxins [19]. Thus, this type of algal bloom posed
significant challenges in terms of water supply and aquatic ecosystem [5].
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Figure 1. Map of study site, Baekje reservoir. 

2.2. Field Monitoring and Experiment 

In this study, eight field-sampling events were conducted from June to October in 2016. The 
monitoring distance was approximately 10–15 km, which started from the dam of the Baekje 
reservoir. Nearly 20 sampling points were collected in each monitoring event. In each sampling 
point, the water samples were collected and the remote sensing reflectance was measured. For 
analyzing cyanobacteria, netting was used to concentrate the water samples. 

2.2.1. Remote Sensing Reflectance Retrieval 

The remote sensing reflectance  was measured on the water surface by using a FieldSpec 
HandHeld 2 spectroradiometer (ASD Inc., Boulder, CO, USA) having a wavelength range of 325–
1075 nm in Figure 2. The measuring position had an azimuth angle of 130°–135° and a zenith angle 
of 35°–40°, which was used to decrease sun glint and shading interference [9,13]. The irradiance and 
radiance  on the water surface were collected to evaluate  and had the following ratio: R ( ) = ( )( ). (1) 

The radiance of water  was defined to minimize the sky effect [13]: ( ) = . ( ) − ( ), (2) 

where . ( ) is the radiance from water with the sky effect, and ( ) is the radiance from the 
sky, and q was the skylight interference between water and air, which is defined as 0.025. 

Figure 1. Map of study site, Baekje reservoir.

2.2. Field Monitoring and Experiment

In this study, eight field-sampling events were conducted from June to October in 2016.
The monitoring distance was approximately 10–15 km, which started from the dam of the Baekje
reservoir. Nearly 20 sampling points were collected in each monitoring event. In each sampling point,
the water samples were collected and the remote sensing reflectance was measured. For analyzing
cyanobacteria, netting was used to concentrate the water samples.

2.2.1. Remote Sensing Reflectance Retrieval

The remote sensing reflectance Rrs was measured on the water surface by using a FieldSpec
HandHeld 2 spectroradiometer (ASD Inc., Boulder, CO, USA) having a wavelength range of
325–1075 nm in Figure 2. The measuring position had an azimuth angle of 130–135◦ and a zenith angle
of 35–40◦, which was used to decrease sun glint and shading interference [9,13]. The irradiance and
radiance LW on the water surface were collected to evaluate Rrs and had the following ratio:

Rrs(λ) =
Lw(λ)

LE(λ)
. (1)

The radiance of water LW was defined to minimize the sky effect [13]:

Lw(λ) = Lw.r(λ)− qLsky(λ), (2)

where Lw.r(λ) is the radiance from water with the sky effect, and Lsky(λ) is the radiance from the sky,
and q was the skylight interference between water and air, which is defined as 0.025.
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Figure 2. Measured remote sensing reflectance spectra in the Baekje reservoir. 

2.2.2. Extraction of Chl-a and PC 

The standard method was referenced to analyze the Chl-a concentration in the water samples 
[20]. The extraction processes of Chl-a were the following: the water samples were filtered with a 
glass microfiber filter (Whatman) that had a 0.7-μm pore size. The filtered samples were ground and 
stayed in an acetone and water (9:1) solution for 24 h. Then, the optical densities of the sample 
supernatants were measured using the Cary-5000 UV-Vis-NIR spectrophotometer (Agilent Inc., 
Santa Clara, CA, USA) that provided a wavelength range from 200 to 3300 nm. From the optical 
densities data, the estimation of Chl-a concentration was followed by [21]. 

PC extraction was based on the findings of [22,23]. The water samples netted approximately 106 
cyanobacteria cells per milliliter and were homogenized with an Ultra-Sonicator (Sonictopia Inc., 
Cheongju, Korea). The homogenized samples of 30 mL were centrifuged at 4000 rpm and 5 °C for 15 
min. The pellets of the centrifuged samples remained without the supernatants. A 5-mL phosphate 
buffer solution was added to the samples. The samples were frozen at −20 °C for 24 h and then 
thawed at room temperature to break the PC pigment cells. A shaking incubator (N-BIOTEK Inc., 
Bucheon, Korea) was used to release the PC pigment from the cells at 150 rpm for 15 min. The 
centrifuging process was repeated under the same condition with the prior step to analyze the 
supernatants. A Cary-5000 UV-Vis-NIR spectrophotometer was used to measure the optical 
densities of the supernatant samples. Then, the PC concentration was estimated using the following 
equation: ( ∙ ) = − (0.474 × )5.34 , (3) 

where and  were the optical density at wavelengths 620 nm and 652 nm, respectively. 

2.2.3. Absorption Coefficient Analysis of Phytoplankton 

The phytoplankton pigment on the GF/F filter was directly measured using the Cary-5000 
UV-Vis-NIR spectrophotometer equipped with an integrating sphere accessory. This method was 

Figure 2. Measured remote sensing reflectance spectra in the Baekje reservoir.

2.2.2. Extraction of Chl-a and PC

The standard method was referenced to analyze the Chl-a concentration in the water samples [20].
The extraction processes of Chl-a were the following: the water samples were filtered with a glass
microfiber filter (Whatman) that had a 0.7-µm pore size. The filtered samples were ground and stayed
in an acetone and water (9:1) solution for 24 h. Then, the optical densities of the sample supernatants
were measured using the Cary-5000 UV-Vis-NIR spectrophotometer (Agilent Inc., Santa Clara, CA,
USA) that provided a wavelength range from 200 to 3300 nm. From the optical densities data, the
estimation of Chl-a concentration was followed by [21].

PC extraction was based on the findings of [22,23]. The water samples netted approximately
106 cyanobacteria cells per milliliter and were homogenized with an Ultra-Sonicator (Sonictopia Inc.,
Cheongju, Korea). The homogenized samples of 30 mL were centrifuged at 4000 rpm and 5 ◦C for
15 min. The pellets of the centrifuged samples remained without the supernatants. A 5-mL phosphate
buffer solution was added to the samples. The samples were frozen at−20 ◦C for 24 h and then thawed
at room temperature to break the PC pigment cells. A shaking incubator (N-BIOTEK Inc., Bucheon,
Korea) was used to release the PC pigment from the cells at 150 rpm for 15 min. The centrifuging process
was repeated under the same condition with the prior step to analyze the supernatants. A Cary-5000
UV-Vis-NIR spectrophotometer was used to measure the optical densities of the supernatant samples.
Then, the PC concentration was estimated using the following equation:

PC
(

mg·m−3
)
=

OD620 − (0.474×OD652)

5.34
, (3)

where OD620 and OD652 were the optical density at wavelengths 620 nm and 652 nm, respectively.

2.2.3. Absorption Coefficient Analysis of Phytoplankton

The phytoplankton pigment on the GF/F filter was directly measured using the Cary-5000
UV-Vis-NIR spectrophotometer equipped with an integrating sphere accessory. This method was
referred to as the light transmission measurement, and allowed the retrieval of absorption coefficients
of in vivo phytoplankton pigments without non-algal particle pigments [24]. The integrating
sphere was attached inside the spectrophotometer and had a 25-mm diameter in a dual-beam port.
When the filtered sample was placed into the reflectance and transmittance ports, the reflectance
and transmittance of the sample filters were measured, respectively. The wavelength range for the
reflectance and transmittance data was set from 350 to 800 nm with a 1-nm interval. To obtain
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the pigment information of a non-algal particle, a 5% NaClO solution bleached the phytoplankton
pigment on the sample filters. The transmittance and reflectance of the bleached samples were
measured. The transmittance and reflectance measurements were repeated with hydrated reference
filters. The transmittance and reflectance data were converted into optical densities for both cases
before and after bleaching. In this study, specific equations of absorption coefficient conversion
reported previously was followed [24]. An evaluation of the absorption coefficient of the filter sample
was previously introduced [25]:

a f (λ) =
2.303A

εV

(
OD f (λ)−ODr(λ)−ODn

)
, (4)

where a f (λ) is absorption coefficient of the filter sample, A is the filtered surface area, V is filtered
water volume, ε is a scaling factor, OD f (λ) is the optical density of the filter sample, ODr(λ) is the
optical density of the reference filter, and ODn is the optical density when the absorption coefficient
was minimum.

The absorption coefficient of the in vivo phytoplankton was estimated by subtracting it from that
of the non-algal particle.

2.3. Semi-Analytical Algorithms for Inland Water

The IOPs such as absorption and backscattering were utilized to construct semi-analytical
algorithms that estimate the Chl-a and PC concentrations. In this study, two types of semi-analytical
algorithms were estimated using a wavelength-dependent backscattering coefficient and a
wavelength-independent backscattering coefficient. The algorithms below were referenced by the
name of the first author of the publication wherein the algorithm appeared.

This study followed the IOP Inversion Model of Inland Waters (IIMIW) developed by [9].
The IIMIW assumed that the backscattering coefficient was dependent on the wavelength and was
divided into backscattering of water and particles:

bb(λ) = bp(560)
(

560
λ

)Y
+ bw(λ), (5)

where bb(λ) is the backscattering coefficient, bp(λ) is the backscattering coefficient of the particles,
bw(λ) is the backscattering coefficient of water, and Y is an empirical constant.

bp(560) was calculated by

bp(560) =
bbp(778)− bw(778)(

560
778

)Y , (6)

bbp(778) =
rrs(778)aw(778)
0.082− rrs(778)

, (7)

Y = 2.0
(

1− 1.2 exp
(
−xp· rrs(443)

rrs(560)

))
, (8)

where rrs(λ) is the remote sensing reflectance underneath the water surface and is set to 1.85Rrs(λ),
bbp(778) is the particle backscattering coefficient at a wavelength of 778 nm, and aw(λ) is the absorption
coefficient of water.

The reflectance ratio was utilized previously [9] to estimate the absorption coefficient and this
could be expressed as follows:

ag(λ1) = [
R(λ2)bb(λ1)

R(λ1)bb(λ2)
(aw(λ2) + bb(λ2)]− bb(λ1)− aw(λ1), (9)
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where ag(λ1) is the absorption coefficient without the water effect, λ2 is set to 709 nm [5,9,13,14,26],
and aw(λ) and bw(λ) are constants whose values were set as per those used by [27].

The absorption coefficient of PC was obtained [14] by partitioning ag(λ) to the absorption
coefficient of colored dissolved organic matter (CDOM), PC, and phytoplankton with PC influence.
The phytoplankton absorption coefficient can be expressed as follows:

aphy(λ) = ag(λ)− acdom(λ). (10)

The absorption coefficient of CDOM can be expressed as follows:

acdom(412) = ag(412)− aphy−pc(412), (11)

acdom(510) = ag(510)− aphy−pc(510), (12)

Scdom =
1

98
ln
(

acdom(412)
acdom(510)

)
, (13)

acdom(λ) = acdom(412) exp(−Scdom(λ− 412)), (14)

where acdom(412) and acdom(510) are the absorption coefficients at 412 and 510 nm, respectively.
aphy − pc(λ) is the absorption coefficient of phytoplankton without the PC effect, Scdom is the CDOM
spectral slope, and acdom(λ) is the absorption coefficient of CDOM along the wavelength.

Here, the absorption coefficient of phytoplankton without the PC effect was calculated using the
following equation:

aphy − pc(λ) = C1(λ)ag(675) + C2(λ), (15)

where C1(λ) and C2(λ) are the regression coefficients between the observed absorption coefficients
and the absorption coefficient at 675 nm.

Finally, the absorption coefficient of PC could be evaluated as follows:

apc(λ) = aphy(λ)− aphy − pc(λ), (16)

where apc(λ) is the absorption coefficient of PC and the wavelength λ is set to 620 nm for PC [12,14,28].
Another method for IOP estimation was based on the assumption that backscattering was

independent of the wavelength and was developed by [29]. The backscattering coefficient can be
expressed as follows:

bb(778) =
1.61Rrs(778)

0.082− 0.6Rrs(778)
. (17)

The absorption coefficient is defined as follows:

ag(λ1) =
Rrs(λ2)

Rrs(λ1)
(a(λ2) + bb)− bb − aw(λ1), (18)

where λ1 is 665 nm for Chl-a-sensitive wavelength and λ2 is 709 nm. They were the same for the
IIMIW algorithm.

Based on the IIMIW, Gons, Gilerson, and Ritchie algorithms were used to estimate the
Chl-a concentration.

The Gons algorithm is expressed as follows:

Chl − a
(

mg m−3
)
=

ag(λchla)

a∗g(λchla)
, (19)

where λchla is 665 nm for the Chl-a-sensitive wavelength and a∗g(λchla) is the specific absorption
coefficient (m2 mg−1) that has a reference value of 0.0161 m2 mg−1.
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The Gilerson algorithm is expressed as follows:

Chl − a
(

mg m−3
)
=

(
ag(λchla)

a∗g(λchla)

)1.124

, (20)

where the specific absorption coefficient is set to 0.022 m2 mg−1.
The Ritchie algorithm can be expressed as follows:

Chl − a
(
mg m−3) = 4.34(−0.3319agh(630)− 1.7485agh(647) + 11.9442agh(λ1)− 0.3319agh(630)), (21)

where ag(λ) is set to 1.47ag(λ) to amplify the signal of the absorption coefficient, as suggested by [13].
Additionally, Ref. [9] utilized the reflectance ratio to estimate the absorption coefficient and it can

be expressed as follows:

PC
(

mg m−3
)
=

apc
(
λpc
)

a∗pc
(
λpc
) , (22)

where λpc is 620 nm for the PC-sensitive wavelength and a∗pc
(
λpc
)

has a constant value of
0.007 m2 mg−1.

The Duan and Simis algorithms were introduced by the backscattering-independent model with
respect to the wavelengths. These algorithms were used to estimate the Chl-a concentration.

The Duan algorithm can be expressed as follows:

ag(λchla) =
Rrs(709)

Rrs(λchla)
(aw(709) + bb)− b1.062

b − aw(λchla), (23)

Chl − a
(

mg m−3
)
=

ag(λchla)

a∗g(λchla)
, (24)

where a∗g(λchla) is 0.161 m2 mg−1.
The Simis algorithm can be expressed as follows:

ag(λchla) =
1

0.68

(
Rrs(709)

Rrs(λchla)
(aw(709)− bb)− bb − aw(λchla)

)
, (25)

Chl − a
(

mg m−3
)
=

ag(λchla)

a∗g(λchla)
, (26)

where a∗g(λchla) is 0.0343 m2 mg−1.
All processes were summarized in Tables S1 and S2 for Chl-a and PC, respectively.

2.4. Global Sensitivity Analysis

The sensitivity analysis was implemented to identify uncertainty and the parameter relations
in the semi-analytical algorithms. The elementary effect test (EFT) was employed to accomplish the
sensitivity analysis for the parameters inside the algorithms. The parameters included the empirical
constant as well as the wavelengths. The EFT was also referred to as the Morris screening method [30].
He introduced the “one-factor-at-a-time” design wherein an input was randomly sampled. The Latin
hypercube design was also used for the input screening process. The EFT can be expressed as follows:

ei(x) =
y∗(x1, x2, . . . xi + ∆, . . . xk)− y(x)

∆
, (27)

where y* is the new outcome, y is the original outcome, and ∆ is the increment dependent on the
range of xi values and the number of discretization increments across the range of xi. We used the
MATLAB software to provide the global sensitivity analysis [31]. Elementary effects were computed
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for all parameters in each Latin hypercube sampling point. The mean and standard deviation of
the distribution of the elementary effect were used as metrics to determine the significance of the
input parameters. The mean of the elementary effect values indicated the influence of a parameter on
the Chl-a and PC concentrations. The standard deviation represented the interaction of a parameter
with other parameters [32,33]. The ranking of the means of the elementary effect values provided the
sensitivity ranks for parameters.

2.5. Parameter Optimization

This study implemented the optimization of parameters of the semi-analytical algorithms with
the single- and multi-objective optimization methods. The pattern search algorithm was employed for
performing single-objective optimization using patternsearch.m in MATLAB. The root-mean-square
error (RMSE) for the concentrations of the Chl-a and PC algorithms was minimized. The multi-objective
optimization method provided a group of optimal points called the Pareto-front optimal set.
We used two objective functions: one for the absorption coefficient and the other for the Chl-a
and PC concentrations. Both objective functions of the multi-objective algorithm were RMSEs.
The multi-objective optimization was performed using gamultiobj.m in MATLAB. Both the pattern
search and multi-objective optimizations were applied for each algorithm (i.e., Gons, Gilerson, Ritchie,
Duna, Simis, Li, and Simis (PC) algorithms). The parameter ranges were consistent with those of the
sensitivity analysis.

A statistical comparison of slopes of “measured vs. estimated” regression lines with unity was
performed to evaluate the probability that the estimated results were on the 1:1 line. The t-statistic was
used to determine the significance of the regression coefficients, as suggested by [34]. The probability
value was calculated using the TTEST function in Excel.

3. Results

3.1. Temporal Variability of Chl-a and PC

The experimental results for the Chl-a and PC concentrations showed a temporal variation from
June to October (Figure S1). The intense bloom occurred in the middle of August when both Chl-a and
PC had maximum concentrations. In this period, the concentration level of PC significantly increased,
indicating that the water body had the cyanobacteria-dominant bloom (Table 1). After August, the
PC concentration nearly disappeared. In contrast, the Chl-a concentration maintained a similar level
throughout the sampling period.

Table 1. Measurements of the pigment concentrations in the Baekje reservoir.

Mean Max. † Min. † Mean Max Min

Chl-a (mg m−3) PC (mg m−3)

06.10.2016 39.27 ± 7.48 ‡ 52.86 24.89 0.18 ± 0.11 0.45 0
08.05.2016 36.49 ± 15.80 66.18 14.19 29.64 ± 24.16 104.28 6.25
08.12.2016 92.34 ± 51.91 243.14 33.94 169.72 ± 235.61 1014.35 32.63
08.19.2016 37.24 ± 8.02 61.44 25.95 38.07 ± 23.58 100.00 12.25
08.24.2016 32.06 ± 11.27 50.01 14.75 17.16 ± 24.84 95.28 1.96
09.06.2016 25.51 ± 11.32 60.88 11.85 1.23 ± 0.27 1.64 0.83
09.26.2016 29.12 ± 11.35 58.26 19.58 0.89 ± 0.62 3.35 0.52
10.14.2016 27.80 ± 9.33 46.17 13.74 0.36 ± 0.21 0.90 0.19

Total 38.93 ± 27.10 243.14 11.85 29.15 ± 91.50 1014.35 0
† Max. and Min. indicate maximum and minimum, respectively. ‡ The “±” sign separates the estimates of averages
and standard deviations.
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3.2. Sensitivity of Parameters in Semi-Analytical Algorithms

Steps of the algorithms listed in Equations (1)–(26) (summarized in Tables S1 and S2 in
Supplementary Materials) were renamed to have a uniform notation from P1 to P31. The semi-analytical
algorithm relations with the renamed parameters are shown in Supplementary A1.

Parameters P1–P13 were related to the estimated IOPs. The other parameters were related to the
estimated Chl-a and PC concentrations. The Gons, Gilerson, Ritchie, and Li algorithms had common
parameters from P1 to P6 in the semi-analytical algorithm. Ranges of parameter values applied to the
EFT were set as summarized in Table 2.

Table 2. Ranges of the selected parameters for the sensitive analysis and the optimization.

Parameter Range Earlier Published Unit Reference

Semi-analytical
algorithm for Chl-a

P1 560–720 560 nm [37]
P2 0.1–6.0 2.0 -

[38]
P3 0.1–4.0 1.0 -
P4 −3.0–−0.1 −1.2 -
P5 −1.0–−0.1 −0.9 -
P6 400–500 443 nm

Semi-analytical
algorithm for PC

P7 400–500 412 nm

[14]
P8 501–600 510 nm
P9 1–100 98 -

P10(P7,P8,P23) 0.18–3.0 0.2092–1.5053 -
P11(P7,P8,P23) 0.001–0.3 0.0128–0.1911 -

Independent
backscattering

P12 1.0–2.0 1.61 -
[18]P13 −1–0 −0.6 -

Gons algorithm P14 660–670 665 nm
[29]P15 0.01–0.1 0.0161 m2 mg−1

Gilerson algorithm P16 0.01–0.1 0.022 m2 mg−1
[6]P17 1.0–1.5 1.124 -

Ritchie algorithm

P18 −0.1–−1.0 −0.3319 -

[11]
P19 −0.1–−2.0 −1.7485 -
P20 5.0–15.0 11.9442 -
P21 −0.1–−2 −1.4306 -
P22 1.0–5.0 4.34 -

Li algorithm P23 615–625 620 nm
[14]P24 0.001–0.01 0.007 m2 mg−1

Duan algorithm P25 0–2 1.062 -
[5]P26 0.01–0.1 0.0161 m2 mg−1

Simis algorithm P27 0.1–1.0 0.68 -
[12]P28 0.01–0.1 0.0343 m2 mg−1

Simis algorithm (PC)
P29 0.1–1.0 0.84 -

[13]P30 0.1–1.0 0.24 -
P31 0.001–0.01 0.007 m2 mg−1

The sensitivity analysis results for Chl-a algorithms are presented in Figure S2. Overall, a larger
mean signified a larger standard deviation of elementary effects found for parameters. Table S3 lists
the ranking of the sensitive parameters for each semi-analytical algorithm. In general, the parameters
related to a specific absorption coefficient (i.e., parameter P15, P16, P22, P24, P26, P28, and P31) had a
considerable effect on both the pigment concentrations and strongly interacted with other parameters
of the algorithms (Figure S2 and Table S3). Parameters of the Y function (e.g., parameters P2, P3, and
P4 in Equation (8)) formed a second group in terms of sensitivity. In contrast, specific wavelengths
(i.e., parameters P1, P5 and P14) had a relatively weak impact on the Chl-a algorithm results and the
other parameters (Figure S2). The relative impact of the other parameters was lower in comparison to
that of the specific absorption coefficient with the Y parameter. Some differences between algorithms
in terms of parameter sensitivity were found. P15 was the most sensitive parameter in the Gons
algorithm (Figure S2A) when compared with parameter P3, which had a lower mean value than
parameter P15. The Gilerson algorithm had a parameter trend similar to that of the Gons algorithm
(Figure S2B). However, when compared with the Gons algorithm, the uncertainty of the parameters
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was relatively higher possibly because the Gilerson algorithm used the power function of the ratio
of absorption coefficient and the specific absorption coefficient, while the Gons algorithm used the
ratio per se. The Richie algorithm had the most sensitive parameter P3, pertinent to the Y function.
It was followed by the specific absorption coefficient P22 value (Figure S2C and Table S3). In the
cases of the Simis and Duan algorithms, which had wavelength-independent backscattering, and
the dominant parameter was the specific absorption coefficient (Figures S2D and S2E; Table S3).
The backscattering parameters and the wavelength variation in the Chl-a algorithm had a weak
influence on the pigment concentrations.

The PC algorithms had influential parameters that were related to the specific absorption
coefficient and the Y value (Figure S3 and Table S3). The parameters of the CDOM had a relatively
low influence on the results of the Li algorithm, similar to the wavelengths of PC and backscattering
(Figure S3A and Table S3). Similarly, the backscattering parameters and PC wavelength range had a
minor effect on the results of the Simis algorithm (Figure S3B and Table S3).

3.3. Optimization Results

The single-objective optimization minimized the objective function considering only the Chl-a and
PC concentrations. The multi-objective algorithm minimized the objective function considering both
the absorption coefficient and the concentrations of Chl-a and PC The multi-objective optimization
provided optimal parameter sets, as reflected in the Pareto graph (Figure S4).

3.3.1. Estimation of the Absorption Coefficient

The single-objective optimization values of the absorption coefficient were substantially different
than measured and earlier published values (Figures S5 and S6). The absorption coefficients appeared
to be underestimated by all algorithms. Slopes of the regression lines “measured vs. estimated with
the single- and multi-objective optimization values” in Figures S5 and S6 varied from 0.03 to 0.32.
Comparison of the top and middle row panels in Figures S5 and S6 showed that the single-objective
optimization provided some improvement compared with the use of the earlier published values;
however, it was certainly insufficient. The best results after the single-objective optimization obtained
by Richie’s Chl-a algorithms and Li’s PC algorithm showed a higher accuracy than other algorithms
(Table S4); however, a nearly 50% underestimation was still substantial. Interestingly, the correlation
between the estimated and measured absorption coefficients was relatively high (Table S4) and the
coefficient of determination R2 of the regressions in Figures S5 and S6 varied from 0.53 to 0.81.

The multi-objective optimization led to improved values of absorption coefficients compared
with the single-objective optimization (Figures S5 and S6). Slopes of regression lines “measured
vs. estimated with the single- and multi-objective optimization values” in Figure S5 varied from
0.81 to 0.83 for the Gons, Gilerson, Ritchie, and Li algorithms, showing a substantial improvement
compared with the single-objective optimization. However, this was not the case for the Simis and
Duan algorithms (panels N and O in Figure S5 and panel F in Figure S6). The correlation between the
estimated and measured absorption coefficients was the same or improved when compared with the
single-objective optimization results. The highest improvement was found for the Gons and Gilerson
algorithms. The values of R2 increased from 0.75 to 0.82 and from 0.75 to 0.83, respectively.

The optimized parameters are listed in Table 3. The reference wavelength (i.e., parameter
P1) in the backscattering calculation was set by an infrared wavelength of approximately 620 nm
for the Chl-a algorithm and 607 nm for the PC algorithm. The parameters in the Y function
had similar values and wavelengths (i.e., parameters P2–P6) along the semi-analytical algorithm.
The backscattering-independent models (the Simis, Duan, and Simis (PC) algorithms) also had similar
backscattering parameters P12 and P13. The optimized wavelength for Chl-a was observed at 660 nm
for the related algorithms. PC wavelength was designated as 615 nm. The optimized specific absorption
coefficients were similar to those of the Gons, Gilerson, and Simis algorithms. The Li and Simis (PC)
algorithms had optimized values of 0.0094 mg m−1 and 0.0031 mg m−1, respectively.
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Table 3. Summary of the optimized parameters of the whole semi-analytical algorithms.

Parameter Gons Gilerson Ritchie Simis Duan Li Simis (PC)

P1 621 619 621 - - 607 -
P2 5.7485 5.5645 5.3307 - - 4.254 -
P3 3.7946 3.7535 3.8360 - - 2.9641 -
P4 −2.8742 −2.5966 −2.5106 - - −1.338 -
P5 −0.7709 −0.7944 −0.7965 - - −0.6418 -
P6 478 472 466 - - 474 -
P7 - - - - - 455 -
P8 - - - - - 531 -
P9 - - - - - 81 -

P10(P7) - - - - - 1.9393 -
P10(P8) - - - - - 0.4214 -
P10(P23) - - - - - 0.2281 -
P11(P7) - - - - - 0.1926 -
P11(P8) - - - - - 0.0947 -
P11(P23) - - - - - 0.0108 -

P12 - - - 1.9999 1.7982 - 1.9920
P13 - - - −0.9964 −0.8489 - −0.9945
P14 660 660 660 660 660 - 662
P15 0.0750 - - - - - -
P16 - 0.0777 - - - - -
P17 - 1.0017 - - - - -
P18 - - −0.1305 - - - -
P19 - - −0.3534 - - - -
P20 - - 10.7271 - - - -
P21 - - −0.2612 - - - -
P22 - - 1.271 - - - -
P23 - - - - - 615 615
P24 - - - - - 0.00941 -
P25 - - - - 2.000 - -
P26 - - - - 0.0158 - -
P27 - - - 0.1802 - - 0.1669
P28 - - - 0.0742 - - -
P29 - - - - - - 0.1547
P30 - - - - - - 0.9559
P31 - - - - - - 0.00305

3.3.2. Performance of Semi-Analytical Algorithms

Both optimization approaches provided a substantial improvement in estimating the Chl-a and
PC concentrations (Figures S7 and S8). Significant improvements occurred with the transition from
earlier published parameters to parameters estimated with single-objective optimizations. The most
significant improvement was achieved for the Rithie, Simis, Duan, and Li algorithms wherein the
determination coefficients increased from 0.68 to 0.77, 0.43 to 0.53, 0.44 to 0.57, and 0.00 to 0.82,
respectively (Table S4). The multi-objective optimization led to further improvements in semi-analytical
algorithm performance in terms of both correlation between the estimated and measured pigment
concentrations, RMSE, and normalized RMSE (Figures S7 and S8). The Gons, Gilerson, and Ritchie
algorithms had reasonable performances while estimating Chl-a with an R2 value over 0.77, and RMSE
and NRMSE of approximately 13.5 mg m−1 and 0.3, respectively, in panels K–M of Figure S7 and in
Table S4.

The Gons algorithm showed the best accuracy results, with an R2 value of 0.78, and RMSE and
NRMSE values of 13.03 mg m−1 and 0.34 in panel K of Figure S7 and in Table S4. The Simis and
Duan algorithm performances had a similar improvement (panels N and O in Figure S7). In the
Li algorithm, the optimization had R2, RMSE, and NRMSE values of 0.82, 167.6 mg m−1, and 5.75,
respectively (panel E in Figure S8). However, the optimized result was relatively overestimated.
The Simis algorithm had an R2 value of 0.61, and RMSE and NRMSE values of 56.6 mg m−1 and
1.94 (panel F in Figure S8), respectively.
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Comparison of slopes of the “measured vs. estimated” pigment concentrations showed that the
multi-objective optimization created slope values close to 1 (bottom panel in Figure S7). A statistical
comparison of slope values with one leads to probabilities being the same as those summarized in
Table 4. These probabilities of PC algorithms (i.e., the Li and Simis (PC) algorithms) were lower in the
case of multi-objective optimization than in the case of single-objective optimization. The trade-off
between algorithm accuracy in terms of pigment concentration and absorption coefficient is illustrated
in Figure S4, with Pareto curves developed for the algorithms used in this research. A substantial
improvement in the accuracy of estimating absorption coefficients did not largely change the RSME of
estimating the Chl-a concentrations.

Table 4. Statistics of optimization performances.

Single-Objective Multi-Objective

Absorption
Coefficient

Concentration
Estimation

Absorption
Coefficient

Concentration
Estimation

p * p p p

Gons 3.352 × 10−19 1.000 × 10−4 5.247 × 10−10 0.058
Gilerosn 2.989 × 10−19 0.001 1.212 × 10−9 0.051
Ritchie 6.473 × 10−16 0.005 1.139 × 10−9 0.043
Simis 2.118 × 10−22 5.735 × 10−14 1.806 × 10−21 5.878 × 10−14

Duan 2.391 × 10−16 4.282 × 10−14 1.189 × 10−20 4.868 × 10−14

Li 1.815 × 10−15 0.020 4.409 × 10−9 3.914 × 10−12

Simis (PC) 3.342 × 10−19 1.015 × 10−7 5.200 × 10−16 1.774 × 10−8

* is the probability of the slope difference with standard line [34].

4. Discussion

This study observed severe algal blooms that occurred in the summer season. Ref. [14] also
observed the maximum concentrations of Chl-a and PC in the summer. The dramatic variation in
PC concentrations resulted from the temperature effects because the cyanobacteria abundance was
significantly sensitive to the water temperature [35]. The consistency of the Chl-a concentration, except
during the summer period, indicated that other algal species such as green algae and diatoms might
become dominant in the water body before and after the cyanobacteria-dominant season.

Overall, the multi-objective optimization that used measurements of both values of pigment
concentrations and the absorption coefficient gave better results in estimating pigment concentrations
in most cases. This was possible probably because of an interconnection between the model parameters,
as revealed by the sensitivity analysis. We hypothesized that the structure of the physically based
models might enhance the prediction of pigment concentrations if the parameter having a clear
physical meaning, e.g., site-specific absorption coefficient, was determined with better accuracy.

The single-objective optimization results showed the cases wherein the model performance with
respect to pigment concentrations was better than that of multi-objective optimization. The Ritchie and
Li algorithms had more accurate performances than the multi-objective optimization results with lower
values of RMSE and NRMSE. (Table S4). For the Li and Simis (PC) algorithms, the probabilities of the
slope differences from the 1:1 line were relatively higher than the multi-objective optimization results
(Table 4). However, the absorption coefficient estimates of the single-objective optimization mostly
had significantly lower probability values of the slope. This implied that the physical characteristics of
the absorption coefficient were distorted, as the single-optimization process optimized the parameters
focusing on the biomass concentration (Figures S5 and S6). In such a case, the optical properties of the
water body could not be correctly deduced from the single-objective optimization.

The sensitivity analysis showed a great influence of the parameters of function Y in Equation (8) on
the Chl-a estimates. Multiple studies have found that the Y value did not influence the semi-analytical
algorithm [9,36–38]. However, most of these conclusions were derived from the coastal waters.
The Y function was the subject of discussion. The Y function as an exponential term, describing the
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wavelength-dependent particle scattering, has been defined [39]. The Y function with reflectance data
and empirical parameters has been previously specified [37]. It has been reported that the Y value
could have substantial variation with respect to the composition and size of particulate matter [36].
Moreover, the Y value was necessary for identifying the sensitivity of the semi-analytical algorithm
results in the inland water [9]. The performance of the semi-analytical algorithm was considerably
sensitive to parameters of the Y function in the freshwater system considered for this research.

Relatively poor performance of the PC algorithms was observed. The absorption coefficient of
the Li algorithm with earlier published parameters was insignificant due to the exponential term
(Equation (14)), which might evaluate high values while evaluating the CDOM effect (panel A in
Figure S6). The PC concentration obtained with earlier published parameter values was not satisfactory
as the PC concentration was dependent on the absorption coefficient results (panel A in Figure S6 and
panel A in Figure S8). The poor performance of the Simis and Duan algorithms for both the absorption
coefficient and concentration resulted from the insufficiency of reflecting the optical properties in the
inland water system. Previous studies have split the total absorption coefficient into the phytoplankton,
non-algal particle, and CDOM matter to reflect the optical properties of the water system and improved
performance of the semi-analytical algorithm [14,40,41]. It was previously reported that the PC estimate
with the Simis algorithm showed a limitation in a specific range of PC concentration because the Simis
algorithm did not consider the optical properties of CDOM and non-algal particles [14].

The optimized parameters in the backscattering model (Equation (6)) characterized the optical
properties of the studied water body. Parameter P1 as the reference wavelength of the backscattering
coefficient had a range from green to near-infrared band. A backscattering wavelength at 710 nm was
introduced to eliminate the backscattering effect of pure water as the suspended solid concentrations
were high [16]. The reference backscattering wavelength at 640 nm was used for the high-particulate
conditions [37]. In addition, the shorter or the longer wavelengths could be available to estimate
more accurate absorption coefficients [37,38], and the earlier published wavelength of a backscattering
coefficient at mainly 555 and 560 nm were previously utilized [9,14]. The optimized wavelength for
a backscattering coefficient (i.e., parameter P1) in the infrared region indicated that the water was
in the high-particulate condition [37]. In the case of the Gons, Gilerson, and Ritchie algorithms, the
parameters in the Y function had similar values and wavelengths (i.e., parameters P2–P6). The values
of Y with optimized parameters were relatively higher than the earlier published values. Ranges 0–2
and 0–2.5 were typical for Y values [37,42]. High values of Y could be caused due to the suspended
matter in the Baekje reservoir water because the Y value was related to the particle matter. The high
values of Y indicated that particle matter in the water was mostly comprised of small particles [43].

The optimized wavelengths for the Chl-a and PC pigments were shorter than the typical earlier
published ones. The representative wavelength for Chl-a was near 665 nm in previous studies [44,45].
The wavelength at 620 nm was the sensitive band for PC [12,28]. The peak position of the pigments
reflected dependence on the concentration [7,46–48].

The performance of the wavelength-dependent models (i.e., the Gons, Gilerson, Ritchie, and
Li algorithms) was better than that of the independent backscattering models (the Duan and Simis
algorithms). The Gons, Gilerson, and Ritchie algorithms were recommended for estimating the
concentration of Chl-a, whereas the Li algorithm was recommended for estimating the concentration
of PC. In particular, the Gons and Li algorithms were recommended for estimating the Chl-a and PC
concentrations, respectively, in waters similar to that of the Baekje reservoir, where high-particulate
conditions exist. In this study, 620 nm was preferred as the reference wavelength of the backscattering
coefficient. The shorter wavelengths for Chl-a and PC appeared to be efficient in the semi-analytical
algorithms. The parameters and wavelength that produced a high Y value to reflect the high-particulate
concentration were recommended. The site-specific values of the specific absorption coefficient were
required, such as 0.075 m2 mg−1 for Chl-a and 0.0094 m2 mg−1 for PC. Based on the sensitivity analysis,
the application of the calibrated parameters in the Y function and specific absorption coefficient
was recommended to dramatically improve algorithm performance rather than the wavelength of
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backscattering or algal pigment. The parameters related to the wavelength were used to describe the
optical properties of the water conditions.

5. Conclusions

This study combined the field monitoring and laboratory measurements to calibrate and compare
semi-analytical algorithms. The sensitivity analysis identified the relation between the algorithm
parameters. The single- and multi-objective optimization methods optimized the parameters of the
algorithms for the Chl-a and PC concentrations. The main conclusions of this study are summarized
as follows:

• The most sensitive parameters were the specific absorption coefficient and the parameters of the
Y function in both Chl-a and PC algorithms.

• Wavelengths around 620 nm were selected for calculating backscattering, and the Y function
became a relatively higher value than the earlier published one. This showed that the Baekje
reservoir had relatively high absorptive water near the surface.

• The multi-objective optimization improved the performance of estimating the Chl-a and PC
concentrations when compared with the estimates obtained from earlier published parameters
and single-objective optimization results.

• The multi-objective optimization was more significant when considering both the absorption
coefficient and biomass concentration compared to the single-objective optimization.

Overall, this research identified the effects of the parameters on semi-analytical algorithm output.
The results suggested that multi-objective optimization of the parameters clearly improved the
performance of the algorithms. Additionally, measurements of the specific absorption coefficient
had the potential to improve the applications of semi-analytical algorithms.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/9/6/542/s1,
Supplementary A1: semi-analytical algorithms, Table S1: Summary of the Chl-a algorithms, Table S2: Summary
of the PC algorithms, Table S3: Sensitivity parameter ranking for the semi-analytical algorithms, Table S4.
Performance analysis, Figure S1: Seasonal variation of the biomass concentrations, point number indicates the
number of monitoring points, Figure S2. Sensitivity analysis results of Chl-a algorithms, A: Gons algorithm,
B: Gilerson algorithm, C: Ritchie algorithm, D: Simis algorithm, and E: Duan algorithm, Figure S3: Sensitivity
analysis of PC algorithms, A: Li algorithm and B:Simis algorithm, Figure S4: Pareto graph of multi-objective
optimization, The top five panels are a Pareto graph for a Chl-a algorithm and the bottom panels are Pareto graph
for PC algorithm, A is Gons algorithm, B is Gilerson algorithm, C is Ritchie algorithm, D is Simis algorithm,
and E is Duan algorithm, G is Li algorithm and H is Simis algorithm, Figure S5: Comparison of measured,
published and estimated from the single-objective and multi-objective optimization absorption coefficients in Chl-a
algorithms. The top five panels are developed with published values, the middle five panels are developed with
the single-objective optimization, and the bottom five panels are developed with the multi-objective optimization.
A, F and K are Gons algorithm results, B, G, and L are Gons algorithm results, C, H, and M are Ritchie algorithm
results, D, I, and N are Simis algorithm results, and E, J, and O are Duan algorithm results, Figure S6: Comparison
of measured, published and estimated from the single-objective and multi-objective optimization absorption
coefficients in PC algorithms. The top two panels are developed with published values, the middle two panels are
developed with single-objective optimization, and the bottom two panels are developed with the multi-objective
optimization. A, C, and E are Li algorithm results, and B, D, and F are Simis algorithm results, Figure S7:
Comparison of measured, published and estimated from the single-objective and multi-objective optimization
Chl-a concentration in Chl-a algorithms. The top five panels are developed with published values, the middle
five panels are developed with the single-objective optimization, and the bottom five panels are developed
with the multi-objective optimization. A, F and K are Gons algorithm results, B, G, and L are Gons algorithm
results, C, H, and M are Ritchie algorithm results, D, I, and N are Simis algorithm results, and E, J, and O are
Duan algorithm results, Figure S8: Comparison of measured, published and estimated from the single-objective
and multi-optimization PC concentration in PC algorithms. The top two panels are developed with published
values, the middle two panels are developed with single-objective optimization, and the bottom two panels are
developed with the multi-objective optimization. A, C, and E are Li algorithm results, and B, D, and F are Simis
algorithm results.
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