3 research outputs found

    Highly Fluorescent and Stable Quantum Dot-Polymer-Layered Double Hydroxide Composites

    No full text
    We report a designed strategy for a synthesis of highly luminescent and photostable composites by incorporating quantum dots (QDs) into layered double hydroxide (LDH) matrices without deterioration of a photoluminescence (PL) efficiency of the fluorophores during the entire processes of composite formations. The QDs synthesized in an organic solvent are encapsulated by polymers, poly­(maleic acid-alt-octadecene) to transfer them into water without altering the initial surface ligands. The polymer-encapsulated QDs with negative zeta potentials (−29.5 ± 2.2 mV) were electrostatically assembled with positively charged (24.9 ± 0.6 mV) LDH nanosheets to form QD-polymer-LDH composites (PL quantum yield: 74.1%). QD-polymer-LDH composite films are fabricated by a drop-casting of the solution on substrates. The PL properties of the films preserve those of the organic QD solutions. We also demonstrate that the formation of the QD-polymer-LDH composites affords enhanced photostabilities through multiple protections of QD surface by polymers and LDH nanosheets from the environment

    Strategy for Synthesizing Quantum Dot-Layered Double Hydroxide Nanocomposites and Their Enhanced Photoluminescence and Photostability

    No full text
    Layered double hydroxide-quantum dot (LDH-QD) composites are synthesized via a room temperature LDH formation reaction in the presence of QDs. InP/ZnS (core/shell) QD, a heavy metal free QD, is used as a model constituent. Interactions between QDs (with negative zeta potentials), decorated with dihydrolipoic acids, and inherently positively charged metal hydroxide layers of LDH during the LDH formations are induced to form the LDH-QD composites. The formation of the LDH-QD composites affords significantly enhanced photoluminescence quantum yields and thermal- and photostabilities compared to their QD counterparts. In addition, the fluorescence from the solid LDH-QD composite preserved the initial optical properties of the QD colloid solution without noticeable deteriorations such as red-shift or deep trap emission. Based on their advantageous optical properties, we also demonstrate the pseudo white light emitting diode, down-converted by the LDH-QD composites

    Cancer-Microenvironment-Sensitive Activatable Quantum Dot Probe in the Second Near-Infrared Window

    No full text
    Recent technological advances have expanded fluorescence (FL) imaging into the second near-infrared region (NIR-II; wavelength = 1000–1700 nm), providing high spatial resolution through deep tissues. However, bright and compact fluorophores are rare in this region, and sophisticated control over NIR-II probes has not been fully achieved yet. Herein, we report an enzyme-activatable NIR-II probe that exhibits FL upon matrix metalloprotease activity in tumor microenvironment. Bright and stable PbS/CdS/ZnS core/shell/shell quantum dots (QDs) were synthesized as a model NIR-II fluorophore, and activatable modulators were attached to exploit photoexcited electron transfer (PET) quenching. The quasi type-II QD band alignment allowed rapid and effective FL modulations with the compact surface ligand modulator that contains methylene blue PET quencher. The modulator was optimized to afford full enzyme accessibility and high activation signal surge upon the enzyme activity. Using a colon cancer mouse model, the probe demonstrated selective FL activation at tumor sites with 3-fold signal enhancement in 10 min. Optical phantom experiments confirmed the advantages of the NIR-II probe over conventional dyes in the first near-infrared region
    corecore