765 research outputs found

    Investigations of Gold-Graphene Nanocomposite for ORR in Aqueous Electrolytes

    Get PDF
    Oxygen reduction reaction (ORR) is an essential reaction step in fuel cell and metal-air batteries. The kinetics of ORR is very sluggish; it requires very high potential to occur. Many interesting articles have been published to enhance the kinetics. In this direction, we are working on metal nanoparticles modified graphene sheet. Gold nanoparticles are attached on two dimensional graphene sheets by in-situ reduction of metal ion in an aqueous reaction mixture. The synthesized nanocomposite is characterized by powder XRD, XPS and Raman spectroscopy. Microscopy image shows gold nanoparticles are attached to graphene sheets. ORR is studied in 0.1 M KOH and 0.1 M K2SO4 electrolytes. O2 reduction in aqueous electrolytes produces water molecules on gold-graphene nanocomposite

    Ability of fullerene to accumulate hydrogen

    Get PDF
    In the present paper, using a modification of the LJ-potential and the continuum approach, we define С60-H2 (He) potentials, as well as interaction energy of two fullerene particles. The proposed approach allows to calculate interactions between carbon structures of any character (wavy graphenes, nanotubes, etc.). The obtained results allowed to localize global sorption zones both inside the particle and on the outer surface of the fullerene

    Discovery of Two New Faint Cataclysmic Variables

    Get PDF
    We report on the discovery of two new faint cataclysmic variables. The objects were selected as candidates from two different imaging surveys aimed at the discovery of such faint systems. One survey used color and variability while the other used color and Hα_\alpha emission as selection criteria. We present our spectra of the two new variables and discuss their properties. A discussion of the implication of these discoveries on the space density of faint cataclysmic variables is presented.Comment: 4 pages, 4 figures. Accepted to A&A letter

    First measurement of the Head-Tail directional nuclear recoil signature at energies relevant to WIMP dark matter searches

    Get PDF
    We present first evidence for the so-called Head-Tail asymmetry signature of neutron-induced nuclear recoil tracks at energies down to 1.5 keV/amu using the 1m^3 DRIFT-IIc dark matter detector. This regime is appropriate for recoils induced by Weakly Interacting Massive Particle (WIMPs) but one where the differential ionization is poorly understood. We show that the distribution of recoil energies and directions induced here by Cf-252 neutrons matches well that expected from massive WIMPs. The results open a powerful new means of searching for a galactic signature from WIMPs.Comment: 4 pages, 6 figures, 1 tabl

    A Preliminary Observational Search for Circumbinary Disks Around Cataclysmic Variables

    Full text link
    Circumbinary (CB) disks have been proposed as a mechanism to extract orbital angular momentum from cataclysmic variables (CVs) during their evolution. As proposed by Taam & Spruit, these disks extend outwards to several a.u. and should be detected observationally via their infrared flux or by absorption lines in the ultraviolet spectra of the CV. We have made use of archival HST/STIS spectra as well as our own near-IR imaging to search for observational evidence of such CB disks in seven CVs. Based on the null result, we place an upper limit on the column density of the disk of N_H~10^17 cm^-2.Comment: accepted for publication in the Astronomical Journal (July 2004

    Low Energy Electron and Nuclear Recoil Thresholds in the DRIFT-II Negative Ion TPC for Dark Matter Searches

    Get PDF
    Understanding the ability to measure and discriminate particle events at the lowest possible energy is an essential requirement in developing new experiments to search for weakly interacting massive particle (WIMP) dark matter. In this paper we detail an assessment of the potential sensitivity below 10 keV in the 1 m^3 DRIFT-II directionally sensitive, low pressure, negative ion time projection chamber (NITPC), based on event-by-event track reconstruction and calorimetry in the multiwire proportional chamber (MWPC) readout. By application of a digital smoothing polynomial it is shown that the detector is sensitive to sulfur and carbon recoils down to 2.9 and 1.9 keV respectively, and 1.2 keV for electron induced events. The energy sensitivity is demonstrated through the 5.9 keV gamma spectrum of 55Fe, where the energy resolution is sufficient to identify the escape peak. The effect a lower energy sensitivity on the WIMP exclusion limit is demonstrated. In addition to recoil direction reconstruction for WIMP searches this sensitivity suggests new prospects for applications also in KK axion searches

    Determination of the D0 -> K+pi- Relative Strong Phase Using Quantum-Correlated Measurements in e+e- -> D0 D0bar at CLEO

    Full text link
    We exploit the quantum coherence between pair-produced D0 and D0bar in psi(3770) decays to study charm mixing, which is characterized by the parameters x and y, and to make a first determination of the relative strong phase \delta between doubly Cabibbo-suppressed D0 -> K+pi- and Cabibbo-favored D0bar -> K+pi-. We analyze a sample of 1.0 million D0D0bar pairs from 281 pb^-1 of e+e- collision data collected with the CLEO-c detector at E_cm = 3.77 GeV. By combining CLEO-c measurements with branching fraction input and time-integrated measurements of R_M = (x^2+y^2)/2 and R_{WS} = Gamma(D0 -> K+pi-)/Gamma(D0bar -> K+pi-) from other experiments, we find \cos\delta = 1.03 +0.31-0.17 +- 0.06, where the uncertainties are statistical and systematic, respectively. In addition, by further including external measurements of charm mixing parameters, we obtain an alternate measurement of \cos\delta = 1.10 +- 0.35 +- 0.07, as well as x\sin\delta = (4.4 +2.7-1.8 +- 2.9) x 10^-3 and \delta = 22 +11-12 +9-11 degrees.Comment: 37 pages, also available through http://www.lns.cornell.edu/public/CLNS/2007/. Incorporated referee's comment

    Measurement of the eta-Meson Mass using psi(2S) --> eta J/psi

    Full text link
    We measure the mass of the eta meson using psi(2S) --> eta J/psi events acquired with the CLEO-c detector operating at the CESR e+e- collider. Using the four decay modes eta --> gamma gamma, 3pi0, pi+pi-pi0, and pi+pi-gamma, we find M(eta)=547.785 +- 0.017 +- 0.057 MeV, in which the first uncertainty is statistical and the second systematic. This result has an uncertainty comparable to the two most precise previous measurements and is consistent with that of NA48, but is inconsistent at the level of 6.5sigma with the much smaller mass obtained by GEM.Comment: 10 pages postscript,also available through http://www.lns.cornell.edu/public/CLNS/2007/, Submitted to PR

    Suppressed Decays of D_s^+ Mesons to Two Pseudoscalar Mesons

    Get PDF
    Using data collected near the Ds*+ Ds- peak production energy Ecm = 4170 MeV by the CLEO-c detector, we study the decays of Ds+ mesons to two pseudoscalar mesons. We report on searches for the singly-Cabibbo-suppressed Ds+ decay modes K+ eta, K+ eta', pi+ K0S, K+ pi0, and the isospin-forbidden decay mode Ds+ to pi+ pi0. We normalize with respect to the Cabibbo-favored Ds+ modes pi+ eta, pi+ eta', and K+ K0S, and obtain ratios of branching fractions: Ds+ to K+ eta / Ds+ to pi+ eta = (8.9 +- 1.5 +- 0.4)%, Ds+ to K+ eta' / Ds+ to pi+ eta' = (4.2 +- 1.3 +- 0.3)%, Ds+ to pi+ K0S / Ds+ to K+ K0S = (8.2 +- 0.9 +- 0.2)%, Ds+ to K+ pi0 / Ds+ to K+ K0S = (5.0 +- 1.2 +- 0.6)%, and Ds+ to pi+ pi0 / Ds+ to K+ K0S < 4.1% at 90% CL, where the uncertainties are statistical and systematic, respectively.Comment: 9 pages postscript,also available through http://www.lns.cornell.edu/public/CLNS/2007/, Submitted to PR

    Measurement of the Decay Constant fDS+f_D{_S^+} using $D_S^+ --> ell^+ nu

    Full text link
    We measure the decay constant fDs using the Ds -> l+ nu channel, where the l+ designates either a mu+ or a tau+, when the tau+ -> pi+ nu. Using both measurements we find fDs = 274 +-13 +- 7 MeV. Combining with our previous determination of fD+, we compute the ratio fDs/fD+ = 1.23 +- 0.11 +- 0.04. We compare with theoretical estimates.Comment: 6 pages postscript,also available through http://www.lns.cornell.edu/public/CLNS/2007
    corecore