3 research outputs found

    Structural Determinants of Chirally Selective Transport of Amino Acids through the α‑Hemolysin Protein Nanopores of Free-Standing Planar Lipid Membranes

    No full text
    Despite the importance of the enantioselective transport of amino acids through transmembrane protein nanopores from fundamental and practical perspectives, little has been explored to date. Here, we study the transport of amino acids through α-hemolysin (αHL) protein pores incorporated into a free-standing lipid membrane. By measuring the transport of 13 different amino acids through the αHL pores, we discover that the molecular size of the amino acids and their capability to form hydrogen bonds with the pore surface determine the chiral selectivity. Molecular dynamics simulations corroborate our findings by revealing the enantioselective molecular-level interactions between the amino acid enantiomers and the αHL pore. Our work is the first to present the determinants for chiral selectivity using αHL protein as a molecular filter

    Flash-Thermal Shock Synthesis of Single Atoms in Ambient Air

    No full text
    Single-atom catalysts feature interesting catalytic activity toward applications that rely on surface reactions such as electrochemical energy storage, catalysis, and gas sensors. However, conventional synthetic approaches for such catalysts require extended periods of high-temperature annealing in vacuum systems, limiting their throughput and increasing their production cost. Herein, we report an ultrafast flash-thermal shock (FTS)-induced annealing technique (temperature > 2850 °C, 5 K/s) that operates in an ambient-air environment to prepare single-atom-stabilized N-doped graphene. Melamine is utilized as an N-doping source to provide thermodynamically favorable metal–nitrogen bonding sites, resulting in a uniform and high-density atomic distribution of single metal atoms. To demonstrate the practical utility of the single-atom-stabilized N-doped graphene produced by the FTS method, we showcased their chemiresistive gas sensing capabilities and electrocatalytic activities. Overall, the air-ambient, ultrafast, and versatile (e.g., Co, Ni, Pt, and Co–Ni dual metal) FTS method provides a general route for high-throughput, large area, and vacuum-free manufacturing of single-atom catalysts

    Rational Design of Aminopolymer for Selective Discrimination of Acidic Air Pollutants

    No full text
    Strong acidic gases such as CO<sub>2</sub>, SO<sub>2</sub>, and NO<sub>2</sub> are harsh air pollutants with major human health threatening factors, and as such, developing new tools to monitor and to quickly sense these gases is critically required. However, it is difficult to selectively detect the acidic air pollutants with single channel material due to the similar chemistry shared by acidic molecules. In this work, three acidic gases (i.e., CO<sub>2</sub>, SO<sub>2</sub>, and NO<sub>2</sub>) are selectively discriminated using single channel material with precise moiety design. By changing the composition ratio of primary (1°), secondary (2°), and tertiary (3°) amines of polyethylenimine (PEI) on CNT channels, unprecedented high selectivity between CO<sub>2</sub> and SO<sub>2</sub> is achieved. Using in situ FT-IR characterizations, the distinct adsorption phenomenon of acidic gases on each amine moiety is precisely demonstrated. Our approach is the first attempt at controlling gas adsorption selectivity of solid-state sensor via modulating chemical moiety level within the single channel material. In addition, discrimination of CO<sub>2</sub>, SO<sub>2</sub>, and NO<sub>2</sub> with the single channel material solid-state sensor is first reported. We believe that this approach can greatly enhance air pollution tracking systems for strong acidic pollutants and thus aid future studies on selective solid-state gas sensors
    corecore