7 research outputs found

    Glycosylated metal chelators as anti-parasitic agents with tunable selectivity

    Get PDF
    Trypanosoma cruzi and Leishmania amazonensis are the causative agents of Chagas’ disease and leishmaniasis, respectively. These conditions affect millions of people worldwide, especially in developing countries. As such, there is an urgent need for novel, efficient and cost-effective treatments for these diseases, given the growing resistance and side-effects of current therapies. This work details the synthesis and evaluation of the anti-parasitic activity of novel amino- and iminopyridyl metal chelators, their glycosylated derivatives and some of their metal complexes. Our results revealed the potent and metal-dependent activity for the aminopyridyl compounds: Cu(II) complexes were most effective against T. cruzi trypomastigotes, while Zn(II) complexes presented excellent activity against L. amazonensis promastigotes. In addition, the compounds showed excellent selectivity indexes and very low relative toxicity as judged by in vitro and in vivo studies, respectively, using RAW macrophages and Galleria mellonella larvae model

    Glycosylated metal chelators as anti-parasitic agents with tunable selectivity

    Get PDF
    Trypanosoma cruzi and Leishmania amazonensis are the causative agents of Chagas’ disease and leishmaniasis, respectively. These conditions affect millions of people worldwide, especially in developing countries. As such, there is an urgent need for novel, efficient and cost-effective treatments for these diseases, given the growing resistance and side-effects of current therapies. This work details the synthesis and evaluation of the anti-parasitic activity of novel amino- and iminopyridyl metal chelators, their glycosylated derivatives and some of their metal complexes. Our results revealed the potent and metal-dependent activity for the aminopyridyl compounds: Cu(II) complexes were most effective against T. cruzi trypomastigotes, while Zn(II) complexes presented excellent activity against L. amazonensis promastigotes. In addition, the compounds showed excellent selectivity indexes and very low relative toxicity as judged by in vitro and in vivo studies, respectively, using RAW macrophages and Galleria mellonella larvae model

    Glycosylated metal chelators as anti-parasitic agents with tunable selectivity

    No full text
    Trypanosoma cruzi and Leishmania amazonensis are the causative agents of Chagas’ disease and leishmaniasis, respectively. These conditions affect millions of people worldwide, especially in developing countries. As such, there is an urgent need for novel, efficient and cost-effective treatments for these diseases, given the growing resistance and side-effects of current therapies. This work details the synthesis and evaluation of the anti-parasitic activity of novel amino- and iminopyridyl metal chelators, their glycosylated derivatives and some of their metal complexes. Our results revealed the potent and metal-dependent activity for the aminopyridyl compounds: Cu(II) complexes were most effective against T. cruzi trypomastigotes, while Zn(II) complexes presented excellent activity against L. amazonensis promastigotes. In addition, the compounds showed excellent selectivity indexes and very low relative toxicity as judged by in vitro and in vivo studies, respectively, using RAW macrophages and Galleria mellonella larvae model

    Synthesis and antimicrobial activity of a phenanthroline-isoniazid hybrid ligand and its Ag+ and Mn2+ complexes

    Get PDF
    Hydrazide ligand, (Z)-N'-(6-oxo-1,10-phenanthrolin-5(6H)-ylidene)isonicotinohydrazide, 1 forms from a 1:1 Schiff base condensation reaction between isoniazid (INH) and 1,10-phenanthroline-5,6-dione (phendione). Ag+ and Mn2+ complexes with 1:2 metal:ligand stoichiometry are prepared: [Ag(1)2]NO3, [Ag(1)2]BF4 and [Mn(1)2](NO3)2. Polymeric {[Ag(1)(NO3)]}n has 1:1 stoichiometry and forms upon infusion of CH2Cl2 into a DMSO solution of [Ag(1)2]NO3. {[Ag(1)(NO3)]}n was structurally characterized using X-ray crystallography. Metal-free 1 and its 1:2 complexes exhibit very good, broad-spectrum antimicrobial activity and are not excessively toxic to mammalian cells (A549 lineage)

    Rutin derivatives obtained by transesterification reactions catalyzed by Novozym 435: Antioxidant properties and absence of toxicity in mammalian cells.

    No full text
    Flavonoids are one of the most important and diversified phenolic groups among products of natural origin. An important property of this metabolite class is the antioxidant action. This study evaluated the antioxidant and cytotoxic activities and oxidative stress of transesterification products of the flavonoid rutin, catalyzed by Novozym® 435. The presence of monoacetate and diacetate was confirmed by quantitative evaluation of the retention times (rutin, 15.68 min; rutin monoacetate, 18.14 min; and rutin diacetate, 18.57 min) and by the data from LC-MS and NMR 1H and 13C. The experiment showed excellent conversion values of 96% in total acetates (rutin monoacetate and diacetate). These results confirmed that rutin derivatives have antioxidant potential, as evaluated by the ORAC method (rutin standard: 0.53 ± 0.08 μM Trolox/g and rutin derivatives: 2.33 ± 1.08 μM Trolox/g) and also show low cytotoxicity in human and animal cells. Rutin derivatives reduced the production of reactive oxygen species in RAW macrophages as well. Many qualities attributed to rutin derivatives make them promising potential candidates for use as nutraceuticals, including their high amounts of antioxidants, biological potential and low toxicity, which contribute to the reduction of oxidative stress
    corecore