3 research outputs found

    Relationship of Udder Morphometric Traits to Mothering Ability of Landrace X Large White Primiparous Sows

    Get PDF
    The use of udder morphometry is often neglected during the selection of replacement gilts. This study was aimed to characterize the udder morphometry of primiparous Landrace x Large White sows across different production stages; and to show its relationship to some mothering ability traits. A total of 20 primiparous Landrace x Large White sows were bred. For each sow, the udder morphometry was characterized by measuring traits like teat tip diameter (DIA), teat length (LEN), inter-teat distance on the same row (SAMER), adjacent teat base distance on opposite row (OPPR), and teat tip to floor distance (FLO) during pre-breeding, post-breeding, and post-farrowing stages. A comparison of observed traits was also made between left and right udders as well as between anterior and posterior udders. Furthermore, the relationship between mothering ability and udder morphometry was evaluated using correlation and regression analyses. Across stages, udder traits were symmetric; however, higher values were measured for traits in posterior than in anterior udders. In the pre-breeding stage, OPPR and FLO of the anterior part had moderate negative correlations to average weaning weight (AWWt) and average daily gain (ADG). On the other hand, in the post-breeding stage, OPPR of the posterior part had a moderate positive correlation to litter size born alive (LSBA) but had a moderate negative correlation to average birth weight (ABWt). Furthermore, IgG content in the colostrum had a strong positive correlation to SAMER of the anterior part but had a strong negative correlation to FLO of the anterior part. It can be concluded that the pre-breeding combined with post-breeding udder morphometry measurements in gilts is useful as a predictor of sow mothering ability. These traits can be included in the criteria when selecting replacement gilts to enhance the productivity of sow herd

    Superoxide Dismutase (SOD) Activity in Cryopreserved Semen of Itik Pinas-Khaki (Anas platyrhynchos L.)

    Get PDF
    Cryopreservation induces oxidative stress on sperm due to an increase in the number of reactive oxygen species (ROS), thereby resulting in decreased sperm quality. ROS's destructive potential is normally counteracted in sperm by their innate antioxidant system consisting of enzymes, which include superoxide dismutase (SOD). This study aimed to assess the quality of semen from Itik Pinas-Khaki (IP-Khaki) drakes that were cryopreserved with either 4.5% DMSO or 7.0% glycerol as cryoprotectant through evaluation of total sperm motility (%) and determination of SOD activity (U/mL). Here, semen samples were collected from 12 sexually mature IP-Khaki drakes, an improved egg-type breed of Philippine mallard duck, and processed using modified reported cryopreservation procedure for ducks. Results showed that post-thawing total sperm motility averages of 12.04±5.61% using 4.5% DMSO and 13.99±5.28% using 7.0% glycerol were comparable. Moreover, similar SOD activity levels of 0.39±0.18 U/mL with 4.5% DMSO and 0.33±0.21 U/mL with 7.0% glycerol in 2.00 x 108 IP- Khaki sperm cells were also observed. The observed very low intracellular SOD activity indicates severe damage to sperm cells due to cryopreservation, which resulted in a comparably low total sperm motility with either of the cryoprotectants. Thus, the cryopreservation protocol used is not the optimum for IP- Khaki semen based on the observed considerable decline in sperm motility and very low SOD activity after cryopreservation
    corecore