1,915 research outputs found
Analysis of triterpenoids, carotenoids, and phenylpropanoids in the flowers, leaves, roots, and stems of white bitter melon (Cucurbitaceae, Momordica charantia)
Purpose: To evaluate the contents of carotenoids, triterpenoids, and phenylpropanoids in different parts of white bitter melon.Methods: We evaluated the accumulation of 2 triterpenoids, 10 carotenoids, and 11 phenylpropanoids in different parts of white bitter melon, including fruits at four different developmental stages using HPLC.Results: Charantin, lutein, and rutin were the main triterpenoids, carotenoids, and phenylpropanoids, respectively. The accumulation of triterpenoids (momordicine and charantin), carotenoids (antheraxanthin, lutein, violaxanthin, α-carotene, and β-carotene), and phenylpropanoids (caffeic acid, chlorogenic acid, epicatechin, gallic acid, p-coumaric acid, rutin, and trans-cinnamic acid) was high inthe leaves and/or flowers, which are exposed to direct sunlight, but low in the roots.Conclusion: Most of the analyzed components were accumulated at high levels in the leaves and/or flowers. These results will help exploit the compounds in various parts of white bitter melon that are beneficial for human health.
Keywords: Momordica charantia, Bitter melon, Triterpenoid, Carotenoid, Phenylpropanoi
Depth-dose distribution in potatoes with low-energy X-rays
Irradiation is known as a handful measure to inhibit potato sprouting, kill harmful bacteria, and increase preservation. The absorbed dose is one of the essential characteristics of the irradiation process. In this study, the depth-dose distributions in potatoes and polymethyl methacrylate were investigated under low-energy X-ray irradiation by using the Fricke dosimeter and Gafchromic film dosimeter. The dose rates required for the rays to penetrate in polymethyl methacrylate were compared with those in potatoes. Polymethyl methacrylate could be used as a phantom in measuring the depth dose delivered in potatoes. The difference in depth-dose distribution in potatoes between one-sided and double-sided irradiation was also investigated. The calculated dose uniformity ratio values are 5.8 and 1.9 for potatoes irradiating one-sided and double-sided
A Rare Duodenal Subepithelial Tumor: Duodenal Schwannoma
Schwannomas are uncommon neoplasms that arise from Schwann cells of the neural sheath. Gastrointestinal schwannomas are rare among mesenchymal tumors of the gastrointestinal tract, and only a few cases have been reported to date. Duodenal schwannomas are usually discovered incidentally and achieving a preoperative diagnosis is difficult. Schwannomas can be distinguished from other subepithelial tumors on endoscopic ultrasonography; however, any typical endosonographic features of duodenal schwannomas have not been reported due to the rarity of these tumors. Immunohistochemistry is essential to distinguish schwannomas from gastrointestinal stromal tumors and leiomyomas. We report a case of duodenal schwannoma found incidentally during a health check-up endoscopy. On endoscopic ultrasonography, this tumor was suspected as a gastrointestinal stromal tumor; therefore, the patient underwent laparoscopic wedge resection of the tumor. Histopathology and immunohistochemistry confirmed that the duodenal lesion was a benign schwannoma
Could Fractional Exhaled Nitric Oxide Test be Useful in Predicting Inhaled Corticosteroid Responsiveness in Chronic Cough? A Systematic Review
© 2016 Background Fractional exhaled nitric oxide (FENO) is a safe and convenient test for assessing T H 2 airway inflammation, which is potentially useful in the management of patients with chronic cough. Objective To summarize the current evidence on the diagnostic usefulness of FENO for predicting inhaled corticosteroid (ICS) responsiveness in patients with chronic cough. Methods A systematic literature review was conducted to identify articles published in peer-reviewed journals up to February 2015, without language restriction. We included studies that reported the usefulness of FENO (index test) for predicting ICS responsiveness (reference standard) in patients with chronic cough (target condition). The data were extracted to construct a 2 × 2 accuracy table. Study quality was assessed with Quality Assessment of Diagnostic Accuracy Studies 2. Results We identified 5 original studies (2 prospective and 3 retrospective studies). We identified considerable heterogeneities in study design and outcome definitions, and thus were unable to perform a meta-analysis. The proportion of ICS responders ranged from 44% to 59%. Sensitivity and specificity ranged from 53% to 90%, and from 63% to 97%, respectively. The reported area under the curve ranged from abou t 0.60 to 0.87; however, studies with a prospective design and a lower prevalence of asthma had lower area under the curve values. None measured placebo effects or objective cough frequency. Conclusions We did not find strong evidence to support the use of FENO tests for predicting ICS responsiveness in chronic cough. Further studies need to have a randomized, placebo-controlled design, and should use validated measurement tools for cough. Standardization would facilitate the development of clinical evidence
A Study on Facial Expression Change Detection Using Machine Learning Methods with Feature Selection Technique
Along with the fourth industrial revolution, research in the biomedical engineering field is being actively conducted. Among these research fields, the brain-computer interface (BCI) research, which studies the direct interaction between the brain and external devices, is in the spotlight. However, in the case of electroencephalograph (EEG) data measured through BCI, there are a huge number of features, which can lead to many difficulties in analysis because of complex relationships between features. For this reason, research on BCIs using EEG data is often insufficient. Therefore, in this study, we develop the methodology for selecting features for a specific type of BCI that predicts whether a person correctly detects facial expression changes or not by classifying EEG-based features. We also investigate whether specific EEG features affect expression change detection. Various feature selection methods were used to check the influence of each feature on expression change detection, and the best combination was selected using several machine learning classification techniques. As a best result of the classification accuracy, 71% of accuracy was obtained with XGBoost using 52 features. EEG topography was confirmed using the selected major features, showing that the detection of changes in facial expression largely engages brain activity in the frontal regions
Genetic Relationship, Virulence Factors, Drug Resistance Profile and Biofilm Formation Ability of Vibrio parahaemolyticus Isolated From Mussel
The objective of this study was to investigate the virulence factors, genetic relationship, antibiotic resistance profile and the biofilm formation ability of Vibrio parahaemolyticus isolates on shrimp and mussel surfaces at 30°C. In this study, eight (n = 8) V. parahaemolyticus isolated from mussel were examined. We used the polymerase chain reaction (PCR) to examine the distribution of different genes, and Repetitive Extragenic Palindromic-PCR (REP-PCR) to compare the genetic relationship. Disk diffusion technique was used to assess antibiotic and multiple-antibiotic resistance. The biofilm formation assay, and field emission scanning electron microscopy (FE-SEM) were used to evaluate biofilm formation ability. Transmission Electron Microscope (TEM) was used to observe the morphological structure of bacterial cell. Our results indicated that the biofilm-associated genes, 16S rRNA, toxR, and tdh, were present in all the tested V. parahaemolyticus isolates (n = 8). Approximately, 62.5% (5 isolates among 8 isolates) isolates showed strong multiple-antibiotic resistance index with an average value of 0.56. All isolates (n = 8) showed strong genetic relationship and significant biofilm formation ability on shrimp and mussel surfaces. This study demonstrated that the presence of virulence factors, high multiple antibiotic resistance index (MARI) values, and effective biofilm formation ability of V. parahaemolyticus isolates could be a great threat to human health and economic values in future. It was also suggested that a high resistance rate to antibiotic could be ineffective for treating V. parahaemolyticus infections. The continuous monitoring of V. parahaemolyticus antibiotic, molecular and biofilm characteristics is needed to increase seafood safety
Suppressive Effect on Lipopolysaccharide-Induced Proinflammatory Mediators by Citrus aurantium L. in Macrophage RAW 264.7 Cells via NF-κB Signal Pathway
Citrus fruits have been used as an edible fruit and a traditional medicine since ancient times. In particular, the peels of immature citrus fruits are used widely in traditional herbal medicine in Korea, as they are believed to contain bioactive components exerting anti-inflammatory activity. This study examined whether the crude methanol extract of Citrus aurantium L. (CME) has a suppressive effect on inducible enzymes and proinflammatory cytokines by inhibiting the NF-κB pathway in LPS-stimulated macrophage RAW 264.7 cells. The cells were pretreated with the indicated concentrations of CME (5, 10, 20, and 50 μg/mL) and then treated with LPS (1 μg/mL). The results showed that CME (10, 20, and 50 μg/mL) inhibited the LPS- (1 μg/mL) induced mRNA and protein expression of iNOS in macrophage Raw 264.7 cells. In addition, the expression of COX-2 was inhibited at the mRNA and protein levels by CME in a dose-dependent manner. The mRNA expression of proinflammatory cytokines, such as TNF-α and IL-6, were markedly reduced by CME (10, 20, and 50 μg/mL). Moreover, CME clearly suppressed the nuclear translocation of the NF-κB p65 subunits, which was correlated with its inhibitory effect on I-κB phosphorylation. These results suggest that CME has anti-inflammatory properties by modulating the expression of COX-2, iNOS, and proinflammatory cytokines, such as TNF-α and IL-6, in macrophage RAW 264.7 cells via the NF-κB pathway
Favorable response to doxorubicin combination chemotherapy does not yield good clinical outcome in patients with metastatic breast cancer with triple-negative phenotype
<p>Abstract</p> <p>Background</p> <p>We analyzed the responses to first line treatment and clinical outcomes of metastatic breast cancer patients treated with palliative doxorubicin/cyclophosphamide (AC) according to molecular cancer subtype.</p> <p>Methods</p> <p>A retrospective analysis was performed for 110 metastatic breast cancer patients selected on the basis of palliative AC treatment and the availability of immunohistochemical data for estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2/neu) status.</p> <p>Results</p> <p>Of the 110 patients analyzed, 71 (64.5%) were hormone receptor positive (HR+), 14 (12.7%) were HER2+, and 25 (22.7%) were triple negative (TN). There were no differences in age, stage at diagnosis, total number of cycles of palliative chemotherapy, incidence of visceral metastasis, and metastatic sites with the exception of liver among breast cancer subtypes. The overall response rates to AC were 55.9% for the HR+ subgroup, 42.9% for the HER2+ subgroup, and 56.5% for the TN subgroup. The progression-free survival (PFS) in patients with HER2+ and TN were significantly shorter than in the HR+ (median PFS, 9.1 <it>vs </it>8.1 <it>vs </it>11.5 months, respectively; p = 0.0002). The overall survival (OS) was 25.4 months in the TN subgroup and 27.3 months in HER2+ subgroup. The median OS for these two groups was significantly shorter than for patients in the HR+ subgroup (median, 38.5 months; 95% CI, 30.1-46.9 months; p < 0.0001).</p> <p>Conclusions</p> <p>The response to palliative AC chemotherapy did not differ among breast cancer subtypes. Despite chemosensitivity for palliative AC, the TN subtype has a shorter overall survival than non-TN subtypes. Innovative treatment strategies should be developed to slow the course of disease.</p
The antioxidant and chemopreventive potentialities of Mosidae (Adenophora remotiflora) leaves
Our study focused on the antioxidant activities of Mosidae leaf ethanol extract (MLE) and included measurements of reducing power, total phenolic compounds, DPPH radical scavenging activity, and hydroxyl radical scavenging activity. In order to determine whether or not MLE evidences any chemopreventive activities, experimental lung metastasis was induced via the i.v. inoculation of colon26-M3.1 carcinoma cells into BALB/c mice. Additionally, we attempted to characterize any possible cytotoxic effects in murine normal splenocytes and tumor cells (B16-BL6 and colon26-M3.1). The total phenolic content and reducing capacity were measured at 39 mg/100 mL and 1.24, respectively, whereas the DPPH and hydroxyl radical scavenging activities of MLE were measured to be 88.89% and 22.10%, respectively. Prophylactic i.v. treatment with MLE resulted in a dose-dependent and significant inhibition of lung metastasis. Specifically, a MLE dose of 200 ug per mouse resulted in an 88.90% inhibition of lung metastasis. For the cytotoxicity assay, MLE doses up to 100 ug/mL were not shown to affect the growth of normal murine splenocytes. Additionally, the survival of normal cells was not affected at MLE doses below 500 ug/mL. However, MLE doses up to 500 ug/mL reduced the percentage of tumor cell growth for B16BL6 (67% alive) and colon26-M3.1 (62% alive) cells
- …